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Introducción al método de los elementos finitos

Introduction to the finite element method

Franck Boyer1, Sébastien Martin2*

Resumen Estas notas presentan los aspectos básicos del método de elemento finito. Se presentan las bases matemá-

ticas del método como las del análisis funcional, la formulación variacional de problemas de contorno para ecuaciones

en derviadas parciales, aśı como el buen planteamiento de los problemas resultantes. Se introducen las aproximaciones

de Galerkin que proporcionan la idea general del método de elemento finito. Se muestran ejemplos de espacios de

elementos finitos y sus propiedades incluyéndose el análisis de error. La inclusión de aspectos prácticos se realiza a

través del análisis de problemas con enfoque en los aspectos matemáticos presentados. El software libre FreeFem++

se emplea en 2D para ilustrar los principales teoremas mostrados, aśı como sus limitaciones, en particular tomando

presupuestos que no están necesariamente oresentes en los teoremas. Se incluyen programas FreeFem++ y ejercicios.

Abstract This note presents the basic aspects of the finite element method. The mathematical foundations such

as the functional framework, the variational formulation of boundary value partial differential equations and the well-

posedness of the problems are presented. Galerkin approximations are introduced, providing the general idea of the

finite element method. Examples of finite element spaces and their related properties are presented, including the

error analysis. Practical aspects are included through the analysis of problems which focus on the mathematical issues

of the course: The free finite element solver FreeFem++ is used in 2D to illustrate the main theorems and their

limitations, in particular by tackling assumptions that are not necessarily met in the theorems. FreeFem++ programs

and exercises are included.
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Introduction

In engineering sciences, finite element solvers are likely
to compute an approximate solution of boundary value
problems. The goal of designing a numerical method is
to ensure the convergence of the method, i.e. to guaran-
tee that the approximate solution is close to the unique
solution of the continuous problem (if hopefully it exists)
defined by the mathematical model. But understanding
the properties of the obtained solution may strongly rely
on mathematical aspects such as

1. the mathematical formulation and the well-posedness
of the continuous problem: existence, uniqueness,
regularity of the solution and stability with re-
spect to the data are required in order to provide
a strong basis for the discretization process;

2. the choice of the discretization process: the subse-
quent approximate finite-dimensional problem has
to be well-posed in order to be numerically solved;

3. the error analysis: the quantitative analysis of the
approximation should guarantee that the solution
to the approximate problem is “close” to the solu-
tion to the initial problem.

The aim of this course is to provide an introduc-
tion to the mathematical analysis of the finite element
method. Practical issues are also addressed.

In section 1 we present the main results in func-
tional analysis, which are the basis of the mathemati-
cal analysis at both continuous and discrete levels. In
section 2 we present the mathematical formulation of

elliptic problems with related results and examples. In
section 3 we present the mathematical formulation of
saddle-point problems with related results and examples.
In section 4 we introduce the so-called Galerkin approx-
imation which defines a class of finite-dimensional prob-
lems associated to the continuous problems. In section 5
we introduce the main approximation spaces and estab-
lish the main approximation properties of these spaces
along with subsequent error estimates of the method. In
section 6 we focus on the finite element approximation
of saddle-point problems such as the Stokes system for
which additional difficulties have to be targetted. In sec-
tion 7 we present some mathematical problems that are
solved with a free finite element solver FreeFem++whose
formalism respects the variational formulation of prob-
lems. Section 8 is dedicated to the FreeFem++ programs.

1. Sobolev spaces

1.1 Definitions

For any open subset Ω of Rd , we define D(Ω) (resp.
D ′(Ω)) to be the set of C ∞ functions compactly sup-
ported in Ω (resp. the set of distributions on Ω). For any
function u∈L1

loc(Ω), and any multi-index α =(α1, ...,αd)∈
Nd , we set

∂ α u =
∂ α1

∂x
α1
1

· · · ∂ αd

∂x
αd

d

u,

in the sense of distributions.

Definition 1.1 (Sobolev space) Let Ω be an open sub-
set of Rd. For all integer k ≥ 0, we define the Sobolev
space Hk(Ω) as

Hk(Ω) = {u ∈ L2(Ω), ∂ α u ∈ L2(Ω), ∀α ∈ Nd , |α| ≤ k}.

The space is endowed with the norm

‖u‖Hk =

(
∑

|α |≤k

‖∂ α u‖2
L2

) 1
2

.

.

Remark 1.2 An equivalent definition consists in defin-
ing, by induction, H0(Ω) = L2(Ω) and

Hk+1(Ω) = {u ∈ Hk(Ω), ∇u ∈ (Hk(Ω))d}.

Definition 1.3 (Domains of Rd) A non empty open
subset Ω of Rd is said to be a Ck domain (resp. a Lip-
schitz domain) if its boundary ∂Ω is a submanifold of
Rd of class Ck (resp. Lipschitz continuous) and if Ω is
locally situated only on one side of its boundary.

For such domains, by using local charts, we can de-
fine the outward unit normal field n : ∂Ω → Rd as well
as surface integrals

∫
∂Ω f and corresponding Lebesgue

spaces Lp(∂Ω).
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Proposition 1.4 (Density of smooth functions) Let
Ω be a Lipschitz bounded domain of Rd, then the set
C∞(Ω) made of smooth functions up to the boundary of
Ω is dense in Hk(Ω) for any k ≥ 0.

The following subspace of Hk(Ω) will be very important
in the study of boundary-value problems.

Definition 1.5 For any open subset Ω in Rd we define
Hk

0 (Ω) as the closure of D(Ω) in Hk(Ω).

The topological dual of Hk
0 (Ω) (i.e. the space made of

all continuous linear forms defined on this space) may
be characterized as follows.

Definition 1.6 For all k ≥ 0, we define the following
space of distributions:

H−k(Ω)=

{
f ∈ D ′(Ω), f = ∑

|α |≤k

∂ α fα , with fα ∈ L2(Ω)

}
.

The space is endowed with the norm

‖ f‖H−k = inf

(
∑

|α |≤k

‖ fα‖2
L2

) 1
2

.

the infimum being taken among all the possible decompo-
sitions of f .

Proposition 1.7 (Dual of Sobolev spaces) The spa-
ce H−k(Ω), k ≥ 0, is a Hilbert space which is isomorphic
to the dual space of Hk

0(Ω). To be more precise, the du-
ality bracket can be expressed as

〈 f ,u〉H−k,Hk
0
= ∑

|α |≤k

(−1)|α |
∫

Ω
fα ∂ α u,

for all f ∈ H−k(Ω) and for all u ∈ Hk
0 (Ω). The formula

does not depend on the choice of decomposition for f .

Note that the topological dual of Hk(Ω) is not a dis-
tribution space and cannot be characterized so easily.

Remark 1.8 The main application of Proposition 1.7
is the following result: any element f ∈ H−1(Ω) can be
written as

f = u+ div(G), with u ∈ L2(Ω) and (G ∈ L2(Ω))d

in the sense of distributions.

1.2 Basic properties
Theorem 1.9 (Chain rule) Let Ω be an open subset
of Rd. For any function u ∈ H1(Ω) and any function
T ∈C1(R;R) with a bounded derivative, we have

T (u) ∈ H1(Ω), ∇T (u) = T ′(u)∇u.

Moreover,

T : H1(Ω) → H1(Ω)
u 7→ T (u)

is a (non-linear) continuous map.

Actually the chain rule is still valid if T is Lipschitz
continuous and piecewise C1, for instance. In this case,
T ′ may be defined in a non univoque way in some points
but the theorem still applies, which implies that the val-
ues of T ′ on these particular points are not important.

Example. If T (x) = x+ = max(x,0), we define T ′(x) = 1

if x > 0 and T ′(x) = 0 if x ≤ 0. Then we obtain

∇(u+) = 1u>0∇u.

But if we define T ′(x) = 1 if x ≥ 0 and T ′(x) = 0 if x < 0,
we obtain

∇(u+) = 1u≥0∇u.

The theorem states that ∇u = 0 almost everywhere on
the set {u = 0}. �

Let us recall the main results on Sobolev embeddings:
in this part, we focus on H1(Ω) even if similar results can
be proved for spaces Hk(Ω), k > 1.

Theorem 1.10 (Sobolev embeddings) Let Ω be a bounded
Lipschitz domain of Rd .

If d = 1, the embedding H1(Ω) ⊂ L∞(Ω) is contin-
uous.

If d = 2, the embedding H1(Ω)⊂ Lp(Ω), for all p ∈
[2,+∞[, is continuous.

If d ≥ 3, the embedding H1(Ω)⊂ Lp∗(Ω) is contin-
uous, with p∗ = 2d

d−2 .

Theorem 1.11 (Rellich-Kondrachov) Let Ω be a bounded
Lipschitz domain of Rd .

If d = 1, the embedding H1(Ω)⊂C0(Ω̄) is compact
(completely continuous).

If d = 2, the embedding H1(Ω)⊂ Lp(Ω), for all p ∈
[1,+∞[, is compact.

If d ≥ 3, the embedding H1(Ω)⊂ Lp(Ω), for all p ∈
[1, p∗[ with p∗ = 2d

d−2
, is compact.

In particular, the embedding Hk+1(Ω)⊂ Hk(Ω), k ≥ 0, is
compact.

Theorem 1.12 (Morrey’s inequality) Let Ω be a bounded
Lipschitz domain of Rd . If

k−α = d/2

with α ∈ (0,1), then one has the following embedding:

Hk(Ω)⊂C0,α(Ω̄).

As a consequence, Hk(Ω)⊂C0(Ω̄) if k > d/2.
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1.3 Trace operator
A Lipschitz continuous function which is defined over

an open subset Ω can be naturally extended up to the
boundary of Ω. This allows us to define the notion of
trace of such a function on the boundary ∂Ω. In some
way, it is possible to build a similar notion for functions
which lack such a regularity.

Theorem 1.13 (Trace) Let Ω be a bounded Lipschitz
domain of Rd. The mapping

γ0 : C∞(Ω̄) → L2(∂Ω)
u 7→ γ0(u) = u|∂Ω

has a unique continuous extension to the whole Sobolev
space H1(Ω). This operator, still denoted γ0, is called
the trace operator. Besides,

the trace operator γ0 : H1(Ω)→ L2(∂Ω) is not sur-
jective onto L2(∂Ω);

the image of H1(Ω) by the trace operator is a frac-

tional Sobolev space called H
1
2 (∂Ω) which is a Hilbert

space if it is endowed with the norm

‖v‖
H

1
2 (∂Ω)

= inf
u∈H1(Ω)
γ0(u)=v

‖u‖H1(Ω).

Moreover, there exists a (non unique) continuous lin-

ear operator R0 : H
1
2 (∂Ω) → H1(Ω), called lift operator,

which satisfies
γ0 ◦R0 = Id

H
1
2 (∂Ω)

.

Proposition 1.14 (Integration by parts) The trace
operator extends the notion of integration by parts: for
all u ∈ H1(Ω), for all Φ ∈ (H1(Ω))d,

∫

Ω
udiv(Φ)+

∫

Ω
∇u ·Φ =

∫

∂Ω
γ0(u)γ0(v).

Example. The case of the unit square is quite interesting.
Let us consider Ω =]0,1[2 and u ∈ C∞(Ω). We have, for
all (x,y) ∈]0,1[2,

u2(x,0) = u2(x,y)− 2

∫ y

0
u(x,z)∂yu(x,z)dz.

Then we get

u2(x,0)≤ u2(x,y)+ 2

∫ y

0
|u(x,z)|

∣∣∂yu(x,z)
∣∣ dz.

Integrating with respect to x and using the Cauchy-Schwarz
inequality, we get

∫ 1
0 u2(x,0)dx ≤ ∫

Ω u2 + 2‖u‖L2 ‖∂yu‖L2

≤ ‖u‖2
L2 + 2‖u‖L2‖∇u‖L2 ,

≤ 2‖u‖L2‖u‖H1 ,

and finally

‖u‖L2(]0,1[×{0}) ≤
√

2‖u‖H1 .

The above inequality shows that the mapping γ0 :C∞(Ω̄)→
L2(∂Ω) is continuous for the H1−topology. Its natural
continuous extension to H1(Ω) is then straightforward
by density (see Proposition 1.4).

Observe finally that we have in fact shown the more
precise inequality

‖u‖L2(]0,1[×{0}) ≤C‖u‖
1
2

L2‖u‖
1
2

H1 ,

which implies that we can estimate the L2 norm of the
trace by using only the square root of the norm of the
gradient of u. This is a formal justification of the nota-

tion H
1
2 (∂Ω) that we adopted for the range of the trace

operator. �

Exercise 1 1. Let Q = (0,1)2 be the unit cube in R2.
Prove that, there exists a C > 0, such that for any
u ∈ H1(Q), we have

∣∣∣∣
∫ 1

0
(γ0u)(x,0)dx−

∫

Q
u

∣∣∣∣
2

≤C

∫

Q
|∇u|2.

2. Let α ∈ (0,1) and Qα = (0,α)2. Prove that for any
u ∈ H1(Q) we have

∣∣∣∣
1

α

∫ α

0
(γ0u)(x,0)dx− 1

α2

∫

Qα

u

∣∣∣∣
2

≤C

∫

Qα

|∇u|2,

and
∣∣∣∣

1

α

∫ α

0
(γ0u)(0,y)dy− 1

α2

∫

Qα

u

∣∣∣∣
2

≤C

∫

Qα

|∇u|2.

3. Let g ∈ L2(∂Q) be defined as follows

g(x,0) = g(x,1) = 0, ∀x ∈ (0,1),

g(0,y) = g(1,y) = 1, ∀y ∈ (0,1).

Using the inequalities of question 2, prove that it
does not exist a function u∈ H1(Q) such that γ0u=
g. We have thus proved that this function g does

not belong to the trace space H
1
2 (∂Q).

In the case of regular domains of Rd , the space H1
0 (Ω)

can be characterized by the following properties:

Proposition 1.15 Let Ω be a bounded Lipschitz domain
of Rd and u ∈ H1(Ω). The following are equivalent:

u ∈ H1
0 (Ω);

ū ∈ H1(Rd), where ū is the extension of u over Rd

satisfying ū = 0 on Rd \Ω.
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It is also possible to consider the trace of functions
in H1(Ω) when combined with a nonlinear function:

Proposition 1.16 Let Ω be a bounded Lipschitz domain
of Rd and T ∈C1(R;R) with a bounded derivative. Then

∀u ∈ H1(Ω), γ0(Tu) = T (γ0(u)).

This property still holds if T is Lipschitz continuous
and piecewise C1 with a countable number of disconti-
nuity points for T ′.

1.4 Poincaré inequalities
The trace operator allows us to give a clear charac-

terization of H1
0 (Ω).

Proposition 1.17 Let Ω be a bounded Lipschitz domain
of Rd. We have

H1
0 (Ω) = Ker(γ0).

The space H1
0 (Ω) is thus the set of functions in H1(Ω)

which are equal to 0 on the boundary in the sense of
traces.

Let us go back to the previous example, dealing with
the unit square, and assume that u is equal to 0 on the
boundary. A similar computation gives

∫

Ω
u2 ≤ 2‖u‖L2‖∇u‖L2 ,

hence
‖u‖L2 ≤C‖∇u‖L2 .

This inequality states that the L2−norm is controlled by
the L2−norm of its derivatives, in the case of functions
that are equal to 0 on the boundary.

Theorem 1.18 (Poincaré-Friedrichs I) Let Ω be a
bounded Lipschitz domain of Rd. There exists a constant
C > 0 such that

∀u ∈ H1
0 (Ω), ‖u‖L2 ≤C‖∇u‖L2 .

In particular the map u 7→ ‖∇u‖L2 is a norm on H1
0 (Ω),

which is equivalent to the classical H1−norm. Other
similar inequalities are available:

Theorem 1.19 (Poincaré-Friedrichs II) Let Ω be a
connected bounded Lipschitz domain of Rd. Consider Γ
a closed part of ∂Ω with a non-empty relative interior
and define

H1
Γ(Ω) = {u ∈ H1(Ω), γ0(u) = 0 on Γ}.

There exists a constant C > 0 such that

∀u ∈ H1
Γ(Ω), ‖u‖L2 ≤C‖∇u‖L2 .

Theorem 1.20 (Poincaré-Wirtinger) Let Ω be a con-
nected bounded Lipschitz domain of Rd. We define

H̃1(Ω) =

{
u ∈ H1(Ω),

∫

Ω
u = 0

}
.

There exists a constant C > 0 such that

∀u ∈ H̃1(Ω), ‖u‖L2 ≤C‖∇u‖L2 .

Actually these theorems follow from the abstract in-
equality:

Theorem 1.21 (Poincaré) Let Ω be a bounded open
subset of Rd. Let H be a Hilbert space, L : H1(Ω)→ H
be a continuous linear operator. We assume that L is
nonzero over the set of nonzero locally constant func-
tions. Then there exists a constant C > 0 such that

∀u ∈ H1(Ω), ‖u‖L2 ≤C(‖∇u‖L2 + ‖L(u)‖H ).

In particular the map u 7→ ‖∇u‖L2 + ‖L(u)‖H is a norm
on H1(Ω), which is equivalent to the classical H1−norm.

Proof of Theorem 1.21. We proceed by reductio ad
absurdum. Assume that the property is false. This im-
plies that there exists a sequence of functions un in H1(Ω)
satisfying

‖un‖L2 ≥ n(‖∇un‖L2 + ‖L(un)‖F ).

By homogeneity we may assume that ‖un‖L2 = 1 so that

‖∇un‖L2 + ‖L(un)‖F ≤ 1

n
. (1)

Thus {un} is bounded in H1(Ω) and consequently there
exists some u ∈ H1(Ω) such that {un} weakly converges
to u in H1(Ω), up to a subsequence. The embedding
H1 ⊂ L2 is compact (here we use the fact that Ω is
bounded) so that the sequence strongly converges in
L2(Ω), which implies that ‖u‖L2 = 1. Then the sequence
{∇un}

weakly converges to ∇u in L2(Ω), as {un} weakly
converges to u in H1(Ω),

strongly converges to 0 in L2(Ω), because of (1),

hence ∇u = 0. This implies that u is locally constant.
Besides, we have

L(un) strongly converges to 0 in F , because of (1),

L(un) weakly converges to L(u) in F , see1.

1The result follows from the proposition:

Proposition 1.22 Let H and F be Hilbert spaces. Assume that
L : H → F is a continuous linear operator. If {un} weakly con-
verges to u in H , then {L(un)} weakly converges to L(u) in F .

Proof. Assume that un ⇀ u in H . We fix T ∈ F ′ and we aim at
proving that T (Lun) → T (Lu). We have T ◦ L ∈ H ′ and as {un}
weakly converges to u in H , we get (T ◦ L)(un) → (T ◦ L)u, i.e.
T (Lun)→ T (Lu). �
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and thus L(u) = 0. Since u is locally constant, by as-
sumption on L, we obtain that necessarily u = 0 which
is in contradiction with the property ‖u‖L2 = 1. This
concludes the proof. �

1.5 Vector fields in L2 with divergence in L2. Defini-
tion of the normal trace

Definition 1.23 (Space Hdiv) The space

Hdiv(Ω) = {u ∈ (L2(Ω))d , div(u) ∈ L2(Ω)}

endowed with the norm

‖u‖Hdiv
= (‖u‖2

L2 + ‖div(u)‖2
L2)

1
2

is a Hilbert space.

Theorem 1.24 Let Ω be a regular bounded open subset
of Rd. The set of vector fields of class (C∞(Ω̄))d is dense
in Hdiv(Ω).

The proof of Proposition 1.24 is based upon the Hahn-
Banach theorem that we recall:

Theorem 1.25 (Hahn-Banach) Let E be a Banach
space and F a subspace of E. Then F is dense in E

if, and only if, any continuous linear form on E which
is zero over F is the zero form.

Proof of Proposition 1.24. In order to apply the
Hahn-Banach theorem, we consider a continuous linear
form F on Hdiv(Ω) which is zero on (C∞(Ω̄))d . Let us
prove that it is zero on the whole space Hdiv(Ω).

Since Hdiv(Ω) is a Hilbert space, the Riesz represen-
tation theorem guarantees that F is represented by an
element f ∈ Hdiv(Ω) by

〈F ,u〉H′
div,Hdiv

=

∫

Ω
f ·u+

∫

Ω
div( f )div(u), ∀u ∈ Hdiv(Ω).

By assumption, we have
∫

Ω
f ·φ +

∫

Ω
div( f )div(φ) = 0, ∀φ ∈ (C∞(Ω̄))d .

We denote f (resp. div( f )) the extension of f (resp.
div( f )) by 0 over Rd we get

∫

Rd
f ·φ +

∫

Rd
div( f )div(φ) = 0, ∀φ ∈ (D(Rd))d .

This shows in particular that div( f ) ∈ H1(Rd) and

∇(div( f )) = f .

Since div( f ) ∈ H1(Ω) and div( f ) ∈ H1(Rd), then g :=
div( f ) ∈ H1

0 (Ω) (see Proposition 1.15) and ∇g = f . Then
the linear form F writes

〈F ,u〉H′
div,Hdiv

=

∫

Ω
u ·∇g+

∫

Ω
div(u)g, ∀u ∈ Hdiv(Ω).

As D(Ω) is dense in H1
0 (Ω) there exists a sequence {gn}∈

D(Ω) which converges to g in H1
0 (Ω). But for any n, we

have
∫

Ω
u ·∇gn+

∫

Ω
div(u)gn = 0, ∀u ∈ Hdiv(Ω),

by definition of the divergence in the sense of distribu-
tions. Thus we can pass to the limit and get

∫

Ω
u · f +

∫

Ω
div(u)div( f ) = 0, ∀u ∈ Hdiv(Ω),

i.e. F = 0 as it is expected. �

Let us recall that H
1
2 (∂Ω) is the image of the trace

operator of γ0 : H1(Ω) → L2(∂Ω) and that the norm of
this space can be defined by

‖φ‖
H

1
2 (∂Ω)

= inf
u∈H1(Ω)
γ0(u)=φ

‖u‖H1(Ω).

We define H− 1
2 (∂Ω) as the dual space of H

1
2 (∂Ω) after

identifying L2(∂Ω) to its own dual space.

Proposition 1.26 (Stokes formula) Let Ω be a Lip-
schitz continuous open subset of Rd. The mapping

γn : (C∞(Ω̄))d → H− 1
2 (∂Ω)

u 7→ γn(u) = (u ·n)|∂Ω

where n denotes the outward normal unit vector at ∂Ω,
has an unique continuous extension on the whole space
Hdiv(Ω). Moreover we have, for all u ∈ Hdiv(Ω) and for
all w ∈ H1(Ω),

∫

Ω
u ·∇w+

∫

Ω
wdiv(u) = 〈γnu,γ0w〉

H
− 1

2 ,H
1
2
.

Remark 1.27 If u ∈ (H1(Ω))d, we have in particular
u ∈ Hdiv(Ω) and the so-called normal trace γn has two
definitions. In fact, they coincide and we have

γ0u ·n = γnu.

In this case, γnu belongs to H
1
2 (Ω).

Proof of Proposition 1.26. Let us recall that, by The-
orem 1.13, there exists a continuous linear lift operator

R0 : H
1
2 (∂Ω)→ H1(Ω) satisfying

γ0 ◦R0 = Id
H

1
2 (∂Ω)

.

Let us proceed in two steps:

Step 1. For all u ∈ Hdiv(Ω) and φ ∈ H
1
2 (∂Ω), we define

Xu ∈ H− 1
2 (∂Ω) as

Xu(φ) =

∫

Ω
(R0(φ) div(u)+ u ·∇R0(φ)), ∀φ ∈ H

1
2 (∂Ω).
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We have

|Xu(φ)| ≤ ‖R0(φ)‖H1‖u‖Hdiv
≤C‖φ‖

H
1
2 (∂Ω)

‖u‖Hdiv
,

using the continuity of R0. This shows that, u being

fixed, Xu is a continuous linear form on H
1
2 (∂Ω) which

satisfies
‖Xu‖

H
− 1

2 (∂Ω)
≤C‖u‖Hdiv

.

This inequality shows that the mapping

u ∈ Hdiv 7→ Xu ∈ H− 1
2 (∂Ω)

is linear and continuous. We denote γn(u) := Xu and it
remains to prove that the desired property is satisfied.

Step 2. Let u ∈ (C∞(Ω̄))d . If w1 and w2 are functions
in H1(Ω) such that γ0w1 = γ0w2, then we obtain by inte-
gration by parts

∫

Ω
((w1 −w2) div(u)+ u ·∇(w1−w2))

=

∫

∂Ω
γ0(w1 −w2)(u ·n)

︸ ︷︷ ︸
=0

.

This shows that, for u ∈ (C∞(Ω̄))d for all w ∈ H1(Ω), by
taking w1 = w and w2 = R0(γ0(w)), we get

〈u ·n,γ0w〉 =

∫

Ω
(w div(u)+ u ·∇w)

=

∫

Ω
(R0((γ0(w)) div(u)+ u ·∇R0((γ0(w)))

= Xu(γ0(w)) = 〈γnu,γ0w〉
H
− 1

2 ,H
1
2
.

This holds for any regular function and the proof is con-
cluded by density, using the continuity of γn. �

Theorem 1.28 Let Ω be a Lipschitz continuous bounded
open subset of Rd and let us denote H0,div(Ω) the closure
of (D(Ω))d in Hdiv(Ω). Then

H0,div(Ω) = Ker(γn).

Proof of Theorem 1.28. It is clear that H0,div(Ω) ⊂
Ker(γn) as (D(Ω))d ⊂ Ker(γn) by definition of the trace
operator. Let us prove that Ker(γn)⊂ H0,div(Ω).

Let u∈Hdiv(Ω) such that γn(u)= 0. Since Ω is bounded
and Lipschitz continuous, we can prove that there ex-
ists a finite open covering of Ω̄ by open subsets ωi, i ∈
{1, ...,m}, such that ωi ∩Ω is a star-shaped subdomain
of Rd . We now introduce a C∞ partition of unity (αi)i

subordinate to this open covering: there exists a family
{ fi}i=1,...,m such that

∀i ∈ {1, ...,m}, fi ∈C∞(Rd),

∀i ∈ {1, ...,m}, supp( fi)⊂ ωi,

χΩ̄ ≤ ∑m
i=1 fi ≤ 1.

Let φ ∈ D(Rd) which we restrict to Ω and we apply the
Stokes formula, see Proposition 1.26 :

∫

Ω
φ div(u)+

∫

Ω
u ·∇φ = 0.

We replace φ by αiφ so that we get
∫

Ω∩ωi

αiφ div(u)+

∫

Ω∩ωi

u · (φ∇αi +αi∇φ) = 0.

We may rewrite this equality as
∫

Rd
(1|Ω∩ωi

αi div(u)+ 1|Ω∩ωi
u ·∇αi)φ

+

∫

Rd
(1|Ω∩ωi

uαi) ·∇φ = 0.

The above equality holds for any test function φ , which
means that

vi := 1|Ω∩ωi
uαi,

which belongs to (L2(Rd))d , has a divergence in the sense
of distributions, which is identified as

1|Ω∩ωi
αi div(u)+ 1|Ω∩ωi

u ·∇αi

which also belongs to L2(Rd). As a consequence, vi ∈
Hdiv(R

d) and its support is in Ω∩ωi which is an open
star-shaped subset by assumption. In order to simplify
the notations we assume that the open subset is a star-
shaped domain with respect to 0. We now introduce
the family of functions defined by the homothetic ratio
θ ∈ (0,1)

vθ
i (x) = vi

( x

θ

)
.

The compact support of each function vθ
i is in Ω∩ωi.

Moreover it is clear that vθ
i converges to vi in Hdiv(R

d)
as θ goes to 1. For a fixed ε > 0, we may find θ ∈ (0,1)
such that

‖vi − vθ
i ‖Hdiv(Ω) ≤ ε.

But since vθ
i has a compact support in Ω∩ωi, we may

use a convolution process that allows us to regularize the
function and prevent the support of the function from
spreading out of Ω∩ωi. Thus there exists η > 0 such
that

ρη ⋆ vθ
i ∈ (D(Ω∩ωi))

d ,

‖vθ
i −ρη ∗ vθ

i ‖Hdiv
≤ ε.

As a consequence, we obtain

‖vi −ρη ∗ vθ
i ‖Hdiv

≤ 2ε.

This process allows us to approximate each vi by func-
tions of (D(Ω))d for the Hdiv−norm. Using the proper-
ties of αi, we get

u =
m

∑
i=1

uαi =
m

∑
i=1

vi.

As the sum is finite, the homothetic mapping combined
with the regularization may be used on each vi, which
allows us to conclude. �
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2. Weak formulation of elliptic problems

Solving a PDE leads to different questions:

the solution or the coefficients of the PDE may be
not regular enough to guarantee a classical sense
to the equation;

the solution may be regular but the functional
space may not have suitable properties to guaran-
tee existence and / or uniqueness of the solution
in this space.

Thus we define a weaker notion of solution, even if
we have in mind that it should match the classical notion
when regularity is met. The general method consists in
proceeding this way:

to find a solution in a functional space which is
weaker than the one that was primarily targetted;

to determine a mathematical formulation by using
test functions and formal integration by parts;

to ensure that 1) classical solutions are weak solu-
tions, 2) weak solutions with additional regularity
properties are classical solutions.

The difficulties are the following ones:

the choice of the functional space is crucial: it is
non trivial and not necessarily unique;

if the notion of solution is too weakened, the exis-
tence issue is easier but the uniqueness properties
may not hold or be harder to prove;

if the notion of solution is not weakened enough,
the uniqueness issue is easier but the existence of
the solution may be too hard to prove.

2.1 Lax-Milgram theorem
Many problems in applied mathematics arise out of

a variational formulation. In the case of so-called ellip-
tic partial differential equations, the basic existence and
uniqueness result is based on an abstract theorem, the
Lax-Milgram theorem, which provides a powerful guide-
line in the analysis of these problems.

Theorem 2.1 (Lax-Milgram) Let H be a Hilbert space,
a(·, ·) a bilinear form on H, L a linear form on H. We
assume that

1. a(·, ·) is continuous:

∀u,v ∈ H, |a(u,v)| ≤ ‖a‖‖u‖H‖v‖H .

2. a(·, ·) is coercive:

∃α > 0, ∀u ∈ H, a(u,u)≥ α‖u‖2
H .

3. L is continuous:

∀u ∈ H, |L(u)| ≤ ‖L‖‖u‖H.

We consider the abstract problem

(P)

{
Find u ∈ H such that
a(u,v) = L(v), ∀v ∈ H.

Problem (P) admits a unique solution. Moreover,

‖u‖H ≤ ‖L‖
α

.

If a is symmetric, then u is the unique minimizer on H

of the functional

J(v) =
1

2
a(v,v)−L(v).

Proof of Theorem 2.1.
Symmetric case I. Assume that a(·, ·) is symmetric.
Let us prove that the variational problem and the mini-
mization problems are equivalent.

Writing v = u+ v− u, we have

J(v) =
1

2
(a(u,u)+ 2a(u,v− u)+ a(v−u,v−u))

−L(u)−L(v− u)
= J(u)+ (a(u,v− u)−L(v−u))

+
1

2
a(v− u,v− u).

If u is a solution of a(u, ·) = L, we have

J(v)− J(u) =
1

2
a(v− u,v− u)≥ α‖v− u‖2,

hence J(u) = minv∈V J(v) and it is the unique solu-
tion of the minimization problem.

Conversely if u ∈V is a solution of

J(u)≤ J(v), ∀v ∈V,

then for all h ∈ V and for all t ∈ R, we have J(u+
th)≥ J(u), i. e.

t(a(u,h)−L(h))+
t2

2
a(h,h)≥ 0, ∀t ∈ R.

Necessarily we get a(u,h) = L(h), for all h ∈V , i. e.
a(u, ·) = L.

Symmetric case II. The well-posedness of the varia-
tional problem can be proved with two methods:

By assumption, a(·, ·) is a scalar product on H

which is equivalent to the usual scalar product on
H. Then, (H,a(·, ·)) is the same topological space
as (H,(·, ·)H) and the linear form L is continuous
on this new Hilbert space. The result follows from
the Riesz representation theorem.
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We directly study the minimization problem by
considering a minimizing sequence and proving that
it is a Cauchy sequence by using the parallelogram
law.

General case. The well-posedness of the variational
problem can be proved as follows. For all u ∈ H, the
form v ∈ H 7→ a(u,v) is continuous so that there exists a
unique Au ∈ H such that

a(u,v) = (Au,v)H , ∀v ∈ H,

as a consequence of the Riesz representation theorem. It
is clear that

A is linear;

A is continuous: if one takes v = Au in the continu-
ity assumption of a we find

‖Au‖2
H = a(u,Au)≤ ‖a‖‖u‖H‖Au‖H ,

so that

‖Au‖H ≤ ‖a‖‖u‖H, ∀u ∈ H,

A is injective: indeed, by using the coercivity prop-
erty of a, we find that

(Au,u)H = a(u,u)≥ α‖u‖2
H , ∀u ∈ H,

and thus

‖Au‖H ≥ α‖u‖H , ∀u ∈ H.

In particular, we have Au = 0 ⇒ u = 0.

By the Riesz representation theorem, L can be repre-
sented by an element ℓ ∈ H and we finally have to prove
that there exists u ∈ H such that Au = ℓ. Let ρ > 0 and

T : H 7→ H

u 7→ Tu = u−ρ(Au− ℓ).

Our problem reduces to the proof of existence of a fixed-
point for T . In a Hilbert space, this can be achieved by
showing that T is a contraction.

‖Tu−Tv‖2
H = ‖u− v‖2

H +ρ2‖Au−Av‖2
H

−2ρ(u− v,A(u− v))H

≤ ‖u− v‖2
H +ρ2‖a‖2‖u− v‖2

H

−2ρα‖u− v‖2
H

≤ (1− 2ρα +ρ2‖a‖2)‖u− v‖2
H.

For ρ sufficiently small, T is a contraction, which con-
cludes the proof. �

Remark 2.2 The Lax-Milgram theorem provides suffi-
cient conditions to find a unique solution of an abstract
problem. These conditions are not necessary! For in-
stance in finite dimension, i.e. H = Rn, the continuity
assumptions are obvious and the coercivity assumption is
expressed as a condition over the matrix that represents
the operator. Indeed denoting {ei}i=1,...,n the canonical
basis of Rn, X = (xi)i=1,...,n the coordinates of u ∈Rn (i.e.
u = ∑n

i=1 xiei), we denote A = (a(e j,ei))i j so that we have
a(u,u) = (AX ,X)Rn where (·, ·)Rn is the usual scalar prod-
uct on Rn. Then, by assumption of coercivity

1

2

(
(AX ,X)+ (X ,AtX)

)
Rn = (AX ,X)Rn

= a(u,u)
≥ α‖u‖2

Rn = α‖X‖2
Rn .

Thus coercivity of a(·, ·) means that A+At is s.p.d. The
theorem then becomes: if A+At is s.p.d. then A is in-
vertible. This is clearly a sufficient condition but not a
necessary one.

In the problems that will be considered, H is the
functional space (L2, H1, H1

0 , etc.), u denotes the (weak)
solution of the problem and functions v serve as test
functions. Besides,

the Lax-Milgram theorem requires some constraints:
in particular, the test functions and the solution
should belong to the same functional space. This
is the reason why the derivation of the weak formu-
lation relies on an equilibrium between the deriva-
tives of the solution and the derivatives of the test
functions.

The regularity of the functions in H cannot be com-
pletely independent from the bilinear form a. If
the functions in H are too regular, the coercivity
property will not be obtained; conversely if the
functions in H are not sufficiently regular, the con-
tinuity of a will not be obtained.

− Consider a(u,v) =
∫

Ω u(−∆v). Then ∆v has
to be defined, which leads us to define H =
H2(Ω)∩H1

0 (Ω). The bilinear form is continu-
ous, since

|a(u,v)| ≤ ‖u‖L2‖∆v‖L2

≤ ‖u‖L2‖v‖H2

≤ ‖u‖H‖v‖H .

Unfortunately the coercivity is missing: if u∈
H we have

a(u,u) =
∫

Ω u(−∆u)
=

∫
Ω u div(−∇u)

=
∫

∂Ω u(−∇u) ·n+ ∫Ω |∇u|2
=

∫
Ω |∇u|2 .
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Clearly there is no α > 0 such that

‖∇u‖2
L2 ≥ α‖u‖2

H

since it would imply that H2(Ω)∩H1
0 (Ω) =

H1
0 (Ω).

− Consider a(u,v) =
∫

Ω ∇u∇v and H = H1(Ω).
The continuity of the bilinear form is guar-
anteed but the coercivity is missing because
a(u,u) = 0 implies that u is a constant func-
tion. Then u ≡ 1 is a counter example for the
existence of a coercivity constant.

2.2 Example 1: Poisson problem
Homogeneous Dirichlet boundary conditions. As-
sume that f ∈ L2(Ω). We consider the following PDE
problem:

(
P
(1)
s

){ −∆u = f in Ω,
u = 0 on ∂Ω.

Consider a regular test function and let us deal with
formal computations. Multiplying by v, integrating over
Ω and integrating by parts, we get

∫

Ω
∇u ·∇v−

∫

∂Ω
v(∇u ·n) =

∫

Ω
f v.

Now let us discuss this equality:

Integrals over Ω only deal with derivatives of order
1 at most. Thus looking for the continuity and
coercivity of the bilinear form leads us to consider
(a subspace of) H1(Ω).

No boundary condition on ∇u ·n is prescribed. But
we target the definition of a functional space that
contains the solution u and the test functions v. As
the solution should be zero on the boundary, we
may impose this condition on the test functions as
well, hence killing the boundary term. The result-
ing functional space is therefore H1

0 (Ω).

The weak problem (or variational problem) associated

to the strong problem
(
P
(1)
s

)
is

(
P
(1)
w

)




Find u ∈ H1
0 (Ω) such that∫

Ω
∇u ·∇v =

∫

Ω
f v,

for all v ∈ H1
0 (Ω).

Exercise 2 Prove that the variational problem
(
P
(1)
w

)

admits a unique solution.

Exercise 3 Let f ∈ Lp(Ω), p∈ [1,+∞]. Which values of
p can be considered in order to apply the same method
as above?

The variational problem admits a unique solution u.
What are the regularity properties of the weak solution?
What is the link with the initial problem?

Note that ∇u ∈ (L2(Ω))d and D(Ω) ⊂ H so that we
can choose v ∈ D(Ω) as a test function:

∫

Ω
∇u ·∇φ =

∫

Ω
f φ , ∀φ ∈ D(Ω).

By definition, the divergence of ∇u is equal to − f in the
sense of distributions. Then u is a solution of −∆u = f

in the sense of distributions. Actually it is possible to
prove the following regularity result:

Theorem 2.3 (Elliptic regularity) Assume that Ω is
a C2 bounded domain of Rd. Let f ∈L2(Ω) and u∈H1

0 (Ω)
the unique variational solution of the Poisson problem

with homogeneous Dirichlet conditions
(
P
(1)
w

)
. We have

u ∈ H2(Ω),

‖u‖H2 ≤C‖ f‖L2 , where C is a constant which only
depends on Ω.

The proof of this theorem is technical and voluntar-
ily omitted. Interestingly all the second order partial
derivatives of u are functions in L2. But the theorem
contains an important regularity assumption on the do-
main. This condition can be weakened (for instance, if Ω
is convex and polygonal the result is still valid) but some
counter-examples do exist otherwise: typically if Ω has
a re-entrant corner, one may find variational solutions
in H1

0 (Ω)\H2(Ω).

Example. Consider the domain defined in polar coor-
dinates by Ω = {(r,θ ), r ≤ 1, 0 ≤ θ ≤ α}, as in Fig. 1.

The function ũ : (r,θ ) 7→ r
π
α sin(πθ

α ) is harmonic. Thus ũ

α

Ω

Figure 1. The domain Ω

satisfies {
−∆ũ = 0 in Ω,

ũ = g on ∂Ω.

where g is a continuous function on ∂Ω satisfying:

g(r,α) = g(r,0) = 0, 0 ≤ r ≤ 1.

Define χε ∈C∞(R2) such that
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χε(r,θ ) = 1 for 0 ≤ r ≤ 1
2 ,

χε(r,θ ) = 0 for 1
2 + ε ≤ r.

and define u := ũχε . Thus u satisfies
{

−∆u = fε in Ω,
u = 0 on ∂Ω.

with

fε :=−∆ũ ∈ L2(Ω),

supp( fε )⊂ Ω∩{(r,θ ), 1
2 ≤ r ≤ 1

2 + ε}.

Moreover, u ≡ ũ on Ω∩{(r,θ ), 0 ≤ r ≤ 1
2}. In particular,

because of the behaviour of u (or ũ) near the corner, we
can prove that u ∈ H1(Ω)\H2(Ω) for α > π . �

Non-homogeneous Dirichlet boundary conditions.

Assume that f ∈ L2(Ω) and g ∈ H
1
2 (∂Ω). We consider

the following PDE problem:

(
P
(2)
s

){ −∆u = f in Ω,
u = g on ∂Ω.

The choice of the functional space for g relies on the
fact that the functional space for the variational formu-
lation is likely to be H1(Ω), according to the previous

example. The trace of the solution should be in H
1
2 (∂Ω).

Dealing with less regular boundary data would lead us
outside the Lax-Milgram framework.

By Theorem 1.13, there exists R0g∈ H1(Ω) such that
γ0(R0g) = g. We define ũ = u−R0g so that the problem(
P
(2)
q

)
is equivalent to the following one

(
P
(2′)
s

){ −∆ũ = f +∆(R0g) in Ω,
ũ = 0 on ∂Ω.

As R0g∈H1(Ω), we have ∇(R0g)∈ (L2(Ω))d and ∆(R0g)=
div(∇(R0g))∈ H−1(Ω) by Proposition 1.7. Thus the vari-

ational formulation of
(
P
(2′)
s

)
reduces to

(
P
(2′)
w

)




Find ũ ∈ H1
0 (Ω) such that∫

Ω
∇ũ ·∇ṽ =

∫

Ω
f ṽ+ 〈∆(R0g), ṽ〉H−1,H1

0
,

for all ṽ ∈ H1
0 (Ω).

This variational formulation falls into the scope of the
Lax-Milgram theorem, hence ũ is uniquely defined. Let
us remark that the duality term can be expressed as:

〈∆(R0g), ṽ〉H−1,H1
0
=−

∫

Ω
∇(R0g) ·∇ṽ.

Remark 2.4 Considering H1
g (Ω) := {u ∈ H1(Ω), γ0u =

g}, the function u = ũ+R0g is the unique solution of

(
P
(2′′)
w

)




Find u ∈ H1
g (Ω) such that∫

Ω
∇u ·∇v =

∫

Ω
f v,

for all v ∈ H1
0 (Ω).

The Lax-Milgram cannot directly be applied to this for-
mulation: H1

g (Ω) is not a vector space, let alone a Hilbert
space! Nevertheless this formulation does not require the
introduction of the lift of the boundary term, whose com-
putation would be difficult in practice; moreover this for-
mulation is used in practical computations.

Exercise 4 Prove that the solution u of the problem(
P
(2′′)
w

)
is also the unique solution of the minimisation

problem
J(u) = inf

v∈H1
g (Ω)

J(v),

with

J(v) =
1

2

∫

Ω
|∇v|2 −

∫

Ω
f v.

Remark 2.5 The elliptic regularity properties proved in
Theorem 2.3 can be extended to the Poisson problem with
non-homogeneous Dirichlet boundary conditions if we as-

sume furthermore that g ∈ H
3
2 (Ω) which is, by definition,

the image of H2(Ω) by the trace operator.

Remark 2.6 We consider the Poisson problem defined
on a unit square Ω=]0,1[2 with a source term f ≡ 0. We
consider Dirichlet boundary conditions: for this purpose,
we denote

Γ :=]0,1[×{0}
and consider the problem





−∆u = f in Ω,
u = 0 on Γ,
u = 1 on ∂Ω\Γ.

The boundary term

g(x) =

{
0 if x ∈ Γ,
1 if x ∈ ∂Ω\Γ.

does not belong to H
1
2 (∂Ω) (see Exercise 1). As a con-

sequence, we cannot use the lift operator to define a
variational formulation in H1(Ω). In fact the solution
of this problem can not belong to H1(Ω) (by definition

of H
1
2 (∂O)). Interestingly, when using the finite ele-

ment method, the discretization of this problem leads to
a well-posed problem. But when considering the solution
uh, then ‖uh‖H1 explodes as h goes to 0, illustrating the
ill-posedness of the (continuous) variational problem in
H1(Ω). See also the Problem given in Section 7.3.

Non-homogeneousNeumann boundary conditions.

Assume that Ω is connected, f ∈ L2(Ω) and g∈H− 1
2 (∂Ω).

We consider the following PDE problem:

(
P
(3)
s

){ −∆u = f in Ω,
∇u ·n = g on ∂Ω.

The choice of the functional space for g is quite natu-
ral: the functional space for the variational formulation
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is likely to be (a subspace of) H1(Ω), according to the
previous examples, so that ∇u ∈ (L2(Ω))d . As we ask for
div(∇u) = ∆u = − f ∈ L2(Ω), if a solution exists, we will
necessarily get ∇u ∈ Hdiv, which allows us to give a weak
sense to the normal trace at the boundary of ∇u · n in

the space H− 1
2 (∂Ω).

In this problem, compatibility conditions emerge:

If the problem admits a solution, then integrating
over Ω we obtain (the data are assumed to be reg-
ular):

∫

Ω
f =

∫

Ω
(−∆u) =−

∫

∂Ω
∇u ·n =−

∫

∂Ω
g.

Existence of a solution requires a necessary condi-

tion. If g ∈ H− 1
2 (∂Ω), the compatibility condition

writes ∫

Ω
f =−〈g,1〉

H
− 1

2 ,H
1
2
.

The solution cannot be unique: we may add any
constant to a solution, thus defining another solu-
tion. An additional condition is required in order
to select a unique solution. A natural way, since Ω
is assumed to be connected, consists in fixing the
constant by imposing

∫

Ω
u = 0.

In the general approach we choose a regular test func-
tion v and proceed as before. The boundary value of the
solution is not prescribed so that no condition is imposed
on the test functions v. By contrast we impose that u

has zero mean value so that the same condition should
be imposed to the test functions. We finally obtain the
variational formulation

(
P
(3)
w

)




Find u ∈ H̃1(Ω) such that∫

Ω
∇u ·∇v =

∫

Ω
f v+ 〈g,v〉

H
− 1

2 ,H
1
2
,

for all v ∈ H̃1(Ω).

Exercise 5 Prove that the variational problem admits
a unique solution.

The variational problem admits a unique solution.
It is possible to get a formulation with test functions in
H1(Ω) instead of H̃1(Ω). Indeed, for any v ∈ H1(Ω), we

consider ṽ = v−m(v) where m(v) = |Ω|−1 ∫
Ω v. Then we

get ∫

Ω
∇u ·∇ṽ =

∫

Ω
f ṽ+ 〈g, ṽ〉

H
− 1

2 ,H
1
2
.

Using ∇v = ∇ṽ,

∫

Ω
∇u ·∇v =

∫

Ω
f v−m(v)

(∫

Ω
f

)

+〈g,v〉
H
− 1

2 ,H
1
2
−m(v)〈g,1〉

H
− 1

2 ,H
1
2
.

Using the compatibilty condition we get
∫

Ω
∇u ·∇v =

∫

Ω
f v+ 〈g,v〉

H
− 1

2 ,H
1
2
. (2)

Taking test functions φ ∈ D(Ω), the influence of the
boundary terms is dropped and we obtain, as in the case
of Dirichlet boundary conditions, −∆u = f in the sense
of distributions. Since ∇u ∈ (L2(Ω))d and f ∈ L2(Ω), the
equation states that ∇u ∈ Hdiv, hence the normal trace

∇u ·n is defined in H− 1
2 (∂Ω) and by the Stokes formula,

see Proposition 1.26,
∫

Ω
∇u ·∇v+

∫

Ω
div(∇u)v = 〈∇u ·n,v〉

H
− 1

2 ,H
1
2
. (3)

By comparison between (2) and (3), as f = −∆u, we
obtain

∇u ·n = g, on ∂Ω

in a weak sense.

Exercise 6 We consider the Poisson problem with non-
homogeneous Fourier (or Robin) boundary conditions:

{
−∆u = f in Ω,

∇u ·n+αu = g on ∂Ω,

with α > 0.

Define the variational formulation.

Is the problem well-posed?

Let us present and briefly discuss more sophisticated
models.

2.3 Example 2: General linear elliptic operators

Let x 7→K (x) ∈Rd×d be a bounded measurable map-
ping. We assume that K is symmetric positive definite
and uniformly coercive:

∃α > 0, (K (x)ξ ,ξ )≥ α |ξ |2 , ∀ξ ∈ Rd , for a.e. x ∈ Ω.

We consider the problem

(
P
(4)
s

){ −div(K ∇u) = f in Ω,
u = g on ∂Ω,

with g ∈ H
1
2 (∂Ω). The associated variational problem is

(
P
(4)
w

)




Find u ∈ H1
g (Ω) such that∫

Ω
(K ∇u) ·∇v) =

∫

Ω
f v,

for all v ∈ H1
0 (Ω).

The adaptation to the non-homogeneous case is straight-
forward. In the Neumann case, the difficulty only relies
on the understanding of the boundary condition which
should be read as

(K ∇u) ·n = g.



Introducción al método de los elementos finitos 13

−1 −0.5 0.5 1

−1

−0.5

0.5

1

Figure 2. The nonlinear function T

Let us conclude this subsection with an important
property of elliptic problems: the weak maximum prin-
ciple.

Theorem 2.7 (Weak maximum principle) Let x 7→
K (x) ∈ Rd×d be a bounded measurable mapping. We
assume that K is symmetric positive definite and uni-

formly coercive. Let f ∈ L2(Ω) and g ∈ H
1
2 (∂Ω). Let

u ∈ H1(Ω) the unique solution of
(
P
(4)
w

)
.

If f and g are non-negative a.e., then u is non-negative
a.e.

Proof of Theorem 2.7. Let T ∈ C1(R;R) be a non-
decreasing function, with bounded derivative, such that
T (s) = 0 if and only if s ≥ 0, see Figure 2.

As u∈H1(Ω), by Theorem 1.9 we deduce that T (u)∈
H1(Ω) and γ0T (u) = T (γ0u) = T (g) almost every where.
Since g ≥ 0 and by construction of T , we have that
T (g) = 0 and thus T (u) ∈ H1

0 (Ω). We can therefore take
T (u) as a test function in the variational formulation of
the problem:

∫

Ω
K ∇u ·∇(T (u)) =

∫

Ω
f T (u).

We have ∇T (u) = T ′(u)∇u and, then

∫

Ω
T ′(u)︸ ︷︷ ︸
≥0

(K ∇u,∇u)︸ ︷︷ ︸
≥0

=
∫

Ω
f︸︷︷︸
≥0

T (u)︸︷︷︸
≤0

.

Then each integral is equal to 0 and the integrands van-
ish almost everywhere. By the coercivity assumption on
K , it follows that

T ′(u)|∇u|2 = 0, almost everywhere,

and thus

T ′(u)∇u = 0, almost everywhere.

By Theorem 1.9, this proves that ∇(T (u)) = 0 and since
T (u) ∈ H1

0 (Ω), we eventually obtain that T (u) = 0. By

construction of T , this proves that u is non-negative a.e.
on Ω. �

The weak maximum principle may admit equivalent
versions in the discrete framework: in particular the
weak maximum principle holds in the case of a P1 finite
element approximation, see Proposition 5.12 whereas it
is not valid in the P2 approximation.

2.4 Example 3: Reaction-diffusion.
We consider the problem

{
−∆u+ηu = f in Ω,

∇u ·n = g on ∂Ω,

with η > 0. The condition η > 0 is important because
there exists η < 0 and source terms f for which no so-
lution exists (this is related to the existence of positive
eigenvalues of the operator −∆). When dealing with
Dirichlet boundary conditions, there is no difficulty and
the variational formulation can be derived in straightfor-
ward way. In the case of Neumann boundary conditions,
it is different: integrating over Ω,

∫

Ω
f = η

∫

Ω
u−

∫

∂Ω
g

so that there is no requirement such as the compatibility
condition on the data. Moreover, the mean value of
u is prescribed and cannot be fixed. The variational
formulation is





Find u ∈ H1(Ω) such that∫

Ω
∇u ·∇v+η

∫

Ω
uv =

∫

Ω
f v,

for all v ∈ H1(Ω).

Exercise 7 Prove that the above variational problem
admits a unique solution.

2.5 Example 4: Convection-diffusion.

Let f ∈ L2(Ω) and b ∈ (C1(Ω̄))d . We consider the
problem

{
−∆u+ b ·∇u = f in Ω,

u = 0 on ∂Ω,

The order of derivative for the convection term b ·∇u is
lower than the one of the diffusion term. Thus the func-
tional space is H1

0 (Ω) and the variational formulation
writes





Find u ∈ H1
0 (Ω) such that∫

Ω
∇u ·∇v+

∫

Ω
(b ·∇u)v =

∫

Ω
f v,

for all v ∈ H1
0 (Ω).

The bilinear form considered here is not symmetric and
this is unavoidable due to the advection term. The conti-
nuity of a(·, ·) is obvious but its coercivity is questionable
since

a(u,u) = ‖∇u‖2
L2 +

∫

Ω
(b ·∇u)u
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has not necessarily the good sign. More precisely, the
second term should be controlled by the first one to en-
sure the coercivity. For this there are two possible ways
to proceed:

Method 1:
∣∣∣∣
∫

Ω
(b ·∇u)u

∣∣∣∣ ≤ ‖b‖∞‖∇u‖L2‖u‖L2

≤ CΩ‖b‖∞‖∇u‖2
L2

whereCΩ denotes the Poincaré-Friedrichs constant.
Thus if CΩ‖b‖∞ < 1, the bilinear form is coercive.

Method 2, based upon an integration by parts:

−
∫

Ω
(b ·∇u)u =

∫

Ω
div(b)

u2

2
≤ 1

2
‖(div(b))+‖L∞C2

Ω‖∇u‖2
L2 .

Thus if ‖(div(b))+‖L∞C2
Ω < 2 the bilinear form is

coercive. Most important cases deal with div(b)≤
0 in which case the condition is obviously satisfied.

If one of the above smallness assumptions on ‖b‖L∞ or
‖div(b)+‖L∞ is satisfied, then the variational problem is
well-posed.

2.6 Example 5: Linear elasticity.
We consider the PDE which describes the displace-

ment of an elastic solid when submitted to a force field.
The domain Ω ⊂ Rd represents the solid at rest. The
vector field u : Ω → Rd represents the displacement of a
material point under the effect of the force field. Thus a
material point at position x at rest is displaced at posi-
tion x+u(x). We now introduce the Jacobian matrix ∇u

and the strain tensor D(u) = 1
2
(∇u+(∇u)t). The Cauchy

stress tensor σ in the solid is ruled by a law which takes
the form

σ = λ Tr(D(u)) Id+ 2µD(u) = λ div(u) Id+ 2µD(u),

where λ and µ are the so-called Lamé coefficients which
quantify the elastic behaviour of the solid. The equilib-
rium of the solid under the load imposed by an external
force f reads

−div(σ) = f ,

i.e.
−2µ div(D(u))−λ ∇(div(u)) = f .

The physical boundary conditions that are classically
used lead us to consider homogeneous Dirichlet condi-
tions u = 0 on a part ΓD of the domain models the
clamping of the solid whereas an homogeneous Neuman
condition σ · n = 0 on ΓN = ∂Ω \ΓD models a no-stress
situation on the other part of the boundary. The natural
framework is

HD = {u ∈ (H1(Ω))d , γ0(u) = 0 on ΓD}

and the variational problem is defined as





Find u ∈ HD such that∫

Ω
2µD(u) : D(v)+

∫

Ω
λ div(u) div(v) =

∫

Ω
f · v,

for all v ∈ HD.

This formulation is well-posed: existence and uniqueness
of the solution can be proved by using the Korn inequal-
ity to prove the coercivity:

Proposition 2.8 (Korn inequality) Let Ω be a Lip-
schitz connected bounded domain of Rd and assume that
|ΓD|> 0. The general case, is more intricate.

There exists a constant C > 0 such that

∀u ∈ HD, ‖∇u‖L2 ≤C‖D(u)‖L2 .

Proof of Proposition 2.8. Let us prove the inequality
in the case ΓD = ∂Ω, i.e. HD = H1

0 (Ω). We have

∫

Ω
|D(u)|2 =

∫

Ω
D(u) : ∇u =

1

2

∫

Ω
|∇u|2 + 1

2

∫

Ω
(∇u)t : ∇u.

The result is proved if the last term is non-negative. We
write ∫

Ω
(∇u)t : ∇u =

∫

Ω
∑
i, j

∂iu j∂ jui

then we integrate by parts using the boundary condi-
tions

∫
Ω(∇u)t : ∇u = −∫Ω ∑i, j ∂ 2

i ju j ui

= −
∫

Ω ∇(div(u)) ·u
=

∫
Ω(div(u))2 ≥ 0.

�

The Korn inequality provides the coercivity of the
bilinear form in the variational formulation of the elas-
ticity problem.

3. Weak formulation of saddle-point
problems

We aim at targetting mathematical problems that do
not fall into the scope of the Lax-Milgram theorem. The
main result will provide necessary and sufficient condi-
tions for the solvability of a class of variational problems.

Let us recall the Banach theorem:

Theorem 3.1 (Banach) Let E and F be Banach spaces
and T : E → F a continuous linear operator. If T is bi-
jective, then T−1 is continuous.

The proof of the theorem is a consequence of the
theorem of the open mapping, which follows from Baire’s
lemma. It admits a corollary:
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Corollary 3.2 (Banach closed range theorem) Let
E and F be Banach spaces and T : E → F a continuous
linear operator. The following are equivalent:

1. There exists α > 0 such that

∀x ∈ E, ‖x‖E ≤ α‖T (x)‖F .

2. T is injective and its image is closed.

Proof of Corollary 3.2. Assume that T is injective
and its image is closed. By assumption, T (E) is closed,
so that T (E) is a Banach space and T is a bijective con-
tinuous linear operator from E onto T (E): it is an isomor-
phism. Thus there exists α > 0 such that ‖T−1(y)‖E ≤
α‖y‖F , for all y ∈ T (E), i. e. ‖x‖E ≤ α‖T (x)‖F , for all
x ∈ E. Conversely, assume that there exists α > 0 such
that

∀x ∈ E, ‖x‖E ≤ α‖T (x)‖F . (4)

From this inequality T is obviously injective. Let us
prove that T (E) is closed. Let

(
T (xn)

)
n
be a sequence in

T (E) which converges to some y∈F ; (T (xn))n is a Cauchy
sequencein F . Inequality (4) and the linearity of T imply
that (xn)n is a Cauchy sequence in E which is complete.
Hence (xn)n converges to some x ∈ E. By continuity of
T , we have y = T (x) and in particular y ∈ T (E). Thus
T (E) is closed. �

3.1 Banach-Nečas-Babuška theorem
In some situations that we will illustrate later, it is

necessary to deal with variational formulations for which
the unknown u and the test function v do not belong to
the same space. In this case, the Lax-Milgram theorem
is inoperant. Moreover, even if u and v belong to the
same space, the Lax-Milgram theorem only deals with
coercive bilinear forms and do not say anything on the
non-coercive case.

The following result is a generalisation of the Lax-
Milgram theorem that gives necessary and suffisant well-
posedness conditions in such cases.

Theorem 3.3 (Banach-Nečas-Babuška) Let V and
W be Hilbert spaces and ã(·, ·) a bilinear continuous form
on V ×W . Then the following properties are equivalent:

For any continuous linear form L on W , there ex-
ists a unique u ∈V such that

ã(u,w) = L(w), ∀w ∈W.

The following conditions are satisfied:

∃α > 0, inf
v∈V

(
sup
w∈W

ã(v,w)

‖v‖V‖w‖W

)
≥ α, (5)

(
∀v ∈V, ã(v,w) = 0

)
⇒ w = 0. (6)

If one of the properties is satisfied, the unique solution
u satisfies

‖u‖V ≤ ‖L‖W ′

α
.

Proof of Theorem 3.3. Since ã(·, ·) is linear and con-
tinuous with respect to the variable w, the Riesz rep-
resentation theorem gives the existence of an operator
Ã : V →W ′ such that

〈
Ãv,w

〉
W ′,W = ã(v,w), ∀w ∈W.

As ã(·, ·) is a continuous bilinear form, Ã is itself linear
and continuous and its norm is controlled by ‖ã‖. Let
us prove the equivalence.

Assume that for any continuous linear form L on
W , there exists a unique u ∈V such that

ã(u,w) = L(w), ∀w ∈W.

i.e. with the notation above

∀L ∈W ′, ∃!u ∈V, Ãu = L.

Then Ã is bijective. By Banach’s theorem (see
Theorem 3.1), Ã−1 is a continuous operator. Thus
there exists α−1 > 0 such that for all L ∈ W ′ the
unique u ∈V such that ã(u, ·) = L satisfies

‖u‖V ≤ α−1‖L‖W ′ .

Let us consider v ∈ V . We note L(w) = ã(v,w) so
that v is the unique solution of ã(v, ·) = L. Hence

‖v‖V ≤ α−1 sup
w∈W

ã(v,w)

‖w‖W

.

This inequality holds for any v ∈ V and therefore
Eq. (5) holds.

Assume now that, for some w∈W , we have ã(v,w)=
0 for all v ∈V . We introduce the continuous linear
form L on W defined as L(w′) = (w,w′)W . Applying
the assumption to v = Ã−1L, we get

0 = ã(Ã−1L,w) =
〈
ÃÃ−1L,w

〉
W ′,W = L(w) = ‖w‖2

W ,

hence w = 0. This proves Eq. (6).

Conversely, assume that Eqs. (5) and (6) hold.

Let us show that Eq. (6) implies that Im(Ã) is
dense in W ′. This is a consequence of the Hahn-
Banach theorem, see Theorem 1.25, which pro-
vides a characterization of the density of a sub-
space of a Banach space: let us consider a contin-
uous linear form φ ∈ (W ′)′ which is zero on Im(Ã).



16 Introducción al método de los elementos finitos

As W is a Hilbert space, it is reflexive and φ is rep-
resented by an element w ∈W as φ(L) = 〈L,w〉W ′,W .
The assumption implies that, for all v∈V , we have

0 = φ(Ãv) =
〈
Ãv,w

〉
W ′,W = ã(v,w) = 0.

By Eq. (6), we obtain w = 0 and thus φ = 0 which
shows that Im(Ã) is dense in W ′. Now let us deal
with Eq. (5), which can be written as

‖Ãv‖W ′ ≥ α‖v‖V , ∀v ∈V,

which implies in particular, see Corollary 3.2, that
Ã is injective and that Im(Ã) is closed. So far the
following properties have been proved: 1) Im(Ã) is
dense in W ′ and 2) Im(Ã) is closed. Thus Im(Ã) =
W ′: Ã is surjective. As a consequence, since Ã

is also injective, the variational problem is well-
posed.

�

Remark 3.4 Assume that V = W and that ã(·, ·) is α-
coercive. We first note that, for any v ∈V ,

sup
w∈V

ã(v,w)

‖w‖V

≥ c(v,v)

‖v‖V

≥ α‖v‖V ,

so that (5) holds. Similarly we have

sup
v∈V

ã(v,w)

‖v‖V

≥ ã(w,w)

‖w‖V

≥ α‖w‖V ,

so that (6) holds.
Therefore, the previous theorem is indeed a general-

ization of the Lax-Milgram theorem.

Remark 3.5 In the case of the finite dimensional frame-
work, i.e. V =Rn, W =Rp and ã(v,w) = (Ãv,w) with Ã ∈
Mp×n(R), Theorem 3.3 can be read as follows. Eq. (5)
should be read as

∀v ∈Rn, ‖Ãv‖ ≥ α‖v‖,

which means that Ã is injective. Eq. (6) states that Ãt is
injective, i.e. Ã is surjective. Clearly the two conditions
are equivalent to the solvability of the linear system.

3.2 Saddle-point problems
Let X and M be Hilbert spaces, a(·, ·) a continuous

bilinear form on X ×X , b a continuous linear form on
X ×M. For all L ∈ X ′, for all G ∈ M′, we aim at solving
the variational problem

(Q)





Find (u, p) ∈ X ×M such that
a(u,v)+ b(v, p) = L(v),

b(u,q) = G(q),
for all (v,q) ∈ X ×M.

The second equation is often referred as the constraint
and the unknown scalar field p is the Lagrange multiplier
associated to the constraint. This comes from the fact
that in the symmetric case the variational problem is
equivalent to the Euler-Lagrange problem which consists
in minimizing the functional

1

2
a(v,v)−L(v)

on the constrained space

Z = {v ∈ X , b(v,q) = G(q), ∀q ∈ M}.

We can also see the solution of this problem as a
saddle-point (u, p) of the functional L defined by

L(v,q) =
1

2
a(v,v)+ b(v, p)−L(v)−G(q),

which is called the Lagrangian of the problem.

Remark 3.6 The variational formulation can be writ-
ten in terms of operators. Defining A : X → X ′ as

〈Au,v〉X ′,X = a(u,v), ∀v ∈ X

and B : X → M′ as

〈Bv, p〉M′ ,M = b(v, p), ∀p ∈ M

the formulation is equivalent to




Find (u, p) ∈ X ×M such that
Au+B′p = L,

Bu = G,

where B′ : M → X ′ is the adjoint operator of B, the bidual
of M being identified to M itself.

Remark 3.7 The variational problem can take the gen-
eral form:





Find (u, p) ∈ X ×M such that
a(u,v)+ b(v, p)− b(u,q)= L(v)−G(q),
for all (v,q) ∈ X ×M.

Defining V =X×M and ã((u, p),(v,q))= a(u,v)+b(v, p)−
b(u,q), the well-posedness of the variational problem de-
pends on conditions satisfied by ã, see Banach-Nečas-
Babuška theorem (i.e. Theorem 3.3). Note also that
ã((u, p),(u, p)) = a(u,u) so that ã has no chance to be co-
ercive on X×M as this term does not include any control
on the Lagrange multiplier p.

Theorem 3.8 (Saddle-point problem) If a(·, ·) is co-
ercive on X , the problem (Q) is well-posed if and only if
the so-called inf-sup condition is satisfied:

∃β > 0, inf
p∈M

(
sup
v∈X

b(v, p)

‖v‖X‖p‖M

)
≥ β . (7)
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Proof of Theorem 3.8. Assume that the problem is
well-posed. By the Banach-Nečas-Babuška theorem, see
Theorem 3.3, this implies that the solution (u, p) contin-
uously depends on the data L and G. Thus there exists
a constant α−1 > 0 such that

‖u‖X + ‖p‖M ≤ α−1(‖L‖X ′ + ‖G‖M′).

Let p̃ ∈ M and let us consider L = 0 and G defined by
G(q) = (p̃,q)M (note that ‖G‖M′ = ‖ p̃‖M). In particular
we obtain that there exists u ∈ X such that

b(u,q) = (p̃,q)M, ∀q ∈ M,

and

‖u‖X ≤C‖ p̃‖M.

Then

‖ p̃‖2
M = (p̃, p̃)M = b(u, p̃)≤ α−1 b(u, p̃)

‖u‖X

‖ p̃‖M,

which yields

α‖ p̃‖M ≤ sup
v∈X

b(v, p̃)

‖v‖X

.

The last inequality is exactly the inf-sup condition given
by Eq. (7).

Conversely, assume that the inf-sup condition is sat-
isfied and let us prove that the bilinear form ã satisfies
the conditions given by Eqs. (5) and (6) in order to apply
Banach-Nečas-Babuška Theorem (see Theorem 3.3).

Let us prove that Eq. (6) is satisfied. Assume that
(v,q) ∈ X ×M is such that

ã((u, p),(v,q)) = 0, ∀(u, p) ∈ X ×M.

We aim at proving that (v,q) = (0,0). We take
(u, p) = (v,q) in the above equality which gives:
a(v,v) = 0 hence v = 0 because a is coercive on X .
Thus the previous equality is reduced to b(u,q) = 0

for all u∈X . The inf-sup condition given by Eq. (7)
implies that q = 0.

Let us prove that Eq. (5) is satisfied. Let (u, p) ∈
X ×M. By the inf-sup condition , we have

β‖p‖M ≤ sup
v∈X

b(v, p)

‖v‖X

.

There exists ũ ∈ X such that

b(ũ, p)

‖ũ‖X

≥ β‖p‖M.

We can choose the norm of ũ and take for instance

‖ũ‖X = ‖p‖M.

We now define (v,q) = (u+ γ ũ, p) and compute the
term ã((u, p),(v,q))

ã((u, p),(v,q))
= a(u,u)+ γa(u, ũ)+ γb(ũ, p)
≥ α‖u‖2

X − γ‖a‖‖u‖X‖ũ‖X + γβ‖ũ‖2
X

≥ α
2 ‖u‖2

X − γ2‖a‖2

2α ‖ũ‖2
X + γβ‖ũ‖2

X ,

where we have used the Young’s inequality for the

last step2. Then choosing γ < αβ
‖a‖2 we obtain

ã((u, p),(v,q)) ≥ α
2
‖u‖2

X + γβ
2
‖ũ‖2

X

≥ α
2 ‖u‖2

X + γβ
2 ‖p‖2

M

≥ δ‖(u, p)‖2
X×M

where δ only depends on γ, β , α and ‖a‖. More-
over we have

‖(v,q)‖X×M = ‖v‖X + ‖q‖M

≤ ‖u‖X + γ‖ũ‖X + ‖p‖M

≤ ‖u‖X +(1+ γ)‖p‖M

and thus

‖(v,q)‖X×M ≤ (1+ γ)‖(u, p)‖X×M.

We finally obtain

ã((u, p),(v,q))

‖(v,q)‖X×M

≥ δ

1+ γ
‖(u, p)‖X×M

which proves that Eq. (5) is satisfied.

�

Remark 3.10 An alternate proof of Theorem 3.3 is based
on a so-called artificial compressibility method. Assume
that a(·, ·) is coercive and that the inf-sup condition is
satisfied. We introduce the approximate problem:




Find (uε , pε ) ∈ X ×M such that
a(uε ,v)X + b(v, pε)− b(uε ,q)+ ε(pε ,q)M = L(v)−G(q),
for all (v,q) ∈ X ×M.

The bilinear form ãε which defines this problem is obvi-
ously continuous and satisfies:

ãε((v, p),(v, p)) = a(v,v)+ ε(p, p)M, ∀v ∈ X ,∀p ∈ M,

2The Young’s inequality reads:

Proposition 3.9 (Young’s inequality) For all a > 0, b > 0,

ab ≤ a2

2ε
+

εb2

2

for any ε > 0.

As a consequence:

γ‖a‖‖u‖X‖ũ‖X ≤ γ2‖a‖2

2α
‖ũ‖2

X +
α

2
‖u‖2

X ,

by identifying a := γ‖a‖‖ũ‖X , b := ‖u‖X and ε = α .
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so that it is coercive. By the Lax-Milgram theorem the
approximate problem admits a unique solution (uε , pε).
Note that the problem can be defined by means of opera-
tors as





Find uε ∈ X and pε ∈ M such that
Auε +B′pε = L,
Buε − ε pε = G,

We use first the inf-sup condition (7), then the first equa-
tion of the system, and finally the continuity of a and L,
to get

‖pε‖M ≤ 1
β supv∈X

b(v,pε)
‖v‖X

= 1
β supv∈X

−a(uε ,v)+L(v)
‖v‖X

≤ ‖a‖
β ‖uε‖X +

‖L‖X ′
β .

This gives us an estimate of pε in terms of uε . We now
take v = uε and q = pε in the approximate problem:

a(uε ,uε)+ ε‖pε‖2
M = L(uε )−G(pε).

Using the coercivity of a(·, ·), we have

α‖uε‖2
X ≤ ‖L‖X ′‖uε‖X + ‖G‖M′‖pε‖M

≤
(
‖L‖X ′ +

‖a‖‖G‖M′
β

)
‖uε‖X +

‖L‖2
X ′

β .

With the Young inequality, we conclude that

α

2
‖uε‖2

X ≤ 1

2α

(
‖L‖X ′ +

‖a‖‖G‖M′

β

)2

+
‖L‖2

X ′

β
.

Thus {uε} and {pε} are bounded in X and M respec-
tively. Up to a subsequence, they weakly converge to a
some u ∈ X and p ∈ M respectively. Obviously we may
pass to the limit in the approximate problem so that (u, p)
is a solution of (Q). Uniqueness of the solution follows
by taking (u, p) as a test function in the homogeneous ab-
stract problem (i.e. the one with L = 0 and G = 0). This
shows that u= 0. Then the inf-sup condition implies that
p = 0.

In fact we can prove that the whole sequence {(uε , pε )}
strongly converges to (u, p). More precisely, we can prove
that there exists C > 0 which only depends on the data
such that

‖u− uε‖X + ‖pε − p‖M ≤Cε, ∀ε > 0.

The difference (uε − u, pε − p) ∈ X ×M satisfies

a(uε − u,v)+ b(v, pε − p)− b(uε − u,q)+ ε(pε,q)M = 0,

for all v ∈ X and for all q ∈ M. Taking q = 0 and using
the inf-sup condition,

β‖pε − p‖M ≤ supv∈X
b(v,pε−p)

‖v‖X

≤ supv∈X
a(uε−u,v)

‖v‖X

≤ ‖a‖‖uε − u‖X .

Then we take v = uε −u and q = pε − p in the above for-
mulation and we use the coercivity of a(·, ·) to get

α‖uε − u‖2
X + ε(pε − p, pε − p)M =−ε(p, pε − p)M,

hence

‖u− uε‖X ≤ ε
‖a‖
αβ

‖p‖M, ‖pε − p‖M ≤ ε
‖a‖2

αβ 2
‖p‖M,

for all ε > 0.

Corollary 3.11 (Right inversibility of B) Assume that
b satisfies the inf-sup condition (7). Then, there exists
a continuous linear operator Φ : M′ → X with ‖Φ‖ ≤ β−1

such that
B◦Φ = IdM′ .

In particular for any G ∈ M′ there exists uG = Φ(G) ∈ X

such that
b(uG,q) = G(q), ∀q ∈ M,

‖uG‖X ≤ ‖G‖M′

β
.

Such an element uG is not necessarily unique.

Remark 3.12 Actually the existence of such an opera-
tor is equivalent to the inf-sup condition.

Proof of Corollary 3.11. We apply Theorem 3.8 to
the abstract problem





Find (u, p) ∈ X ×M such that
(u,v)X + b(v, p) = 0,

b(u,q) = G(q),
for all (v,q) ∈ X ×M.

As (·, ·)X is obviously coercive on X , the theorem applies
and we have a unique solution (uG, pG)∈X×M satisfying
the above problem. Then if we take v = uG in the first
equation, we obtain

‖uG‖2
X =−G(pG).

Besides the inf-sup condition gives

β‖pG‖M ≤ sup
v∈X

(
b(v, pG)

‖v‖X

)
= sup

v∈X

(
(uG,v)X

‖v‖X

)
= ‖uG‖X .

Thus we get

‖uG‖2
X ≤ ‖G‖M′‖pG‖M ≤ ‖G‖M′

β
‖uG‖X ,

which provides the estimate on ‖uG‖X . Moreover by con-
struction, uG depends linearly on G which gives the ex-
istence of the operator Φ. �

It is now possible to determine a priori bounds for
the solution of the abstract problem:
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Theorem 3.13 (A priori estimates) Assume that a(·, ·)
is coercive on X (with α the constant of coercivity). As-
sume that b satisfies the inf-sup condition (7). Then the
unique solution (u, p) of the abstract problem (Q) satis-
fies:

‖u‖X ≤ ‖L‖X ′

α
+

1

β

(
1+

‖a‖
α

)
‖G‖M′ , (8)

‖p‖M ≤
(

1+
‖a‖
α

)(
1

β
‖L‖X ′ +

‖a‖
β 2

‖G‖M′

)
(9)

Proof of Theorem 3.13. Let us use the properties
of the right inverse of B that was considered in Corol-
lary 3.11. Let (u, p) ∈ X × M be the solution of the
saddle-point problem (Q). We take v = u−Φ(G) as a
test function in the first equation:

a(u,u−Φ(G))+ b(u−Φ(G), p) = L(u−Φ(G)).

Note that, thanks to the second equation of the system
b(u−Φ(G), p) = b(u, p)− b(Φ(G), p) = G(p)−G(p) = 0.
Thus we have

a(u−Φ(G),u−Φ(G)) = L(u−Φ(G))−a(Φ(G),u−Φ(G)).

Using the coercivity of a(·, ·) and the estimates on Φ,

α‖u−Φ(G)‖X ≤ ‖L‖X ′ +
‖a‖
β

‖G‖M′ .

This yields

‖u‖X ≤ ‖u−Φ(G)‖X + ‖Φ(G)‖X

≤ ‖L‖X ′
α + 1

β

(
1+ ‖a‖

α

)
‖G‖M′ .

The estimate on p is obtained with the inf-sup condition:

β‖p‖M ≤ supv∈X
b(v,p)
‖v‖X

≤ supv∈X
a(u,v)−L(v)

‖v‖X

≤ ‖a‖‖u‖X + ‖L‖X ′ .

Inserting the estimate on u into the above inequality
allows us to conclude the proof. �

Let us discuss the consequences of the previous re-
sults. In particular, we present some extension of Theo-
rem 3.8 by weakening some assumption and we consider
the finite dimensional problem.

A stronger result

Definition 3.14 (Kernel) The kernel of a bilinear form
b is the closed subspace Z ⊂ X defined as

Z := Ker(B) = {v ∈ X , b(v,q) = 0, ∀q ∈ M}.

Corollary 3.15 Assume that b satisfies the inf-sup con-
dition (7). Let L be a continuous linear form on X such

that L(v) = 0 for all v ∈ Z. Then there exists a unique
p ∈ M such that

L(v) = b(v, p), ∀v ∈ X ,

and

‖p‖M ≤ ‖L‖X ′

β
.

Proof of Corollary 3.15. By Theorem 3.8 and as-
sumptions on L, there is a unique (u, p) ∈ X ×M such
that

{
(u,v)X + b(v, p) = L(v), ∀v ∈ X ,

b(u,q) = 0, ∀q ∈ M.

The second equation states that u ∈ Z. Thus if we take
v = u in the first equation we obtain by using the as-
sumption L|Z = 0 that ‖u‖2

X = 0 hence u = 0. Thus we
have

b(v, p) = L(v), ∀v ∈ X .

Moreover by the inf-sup inequality, we have:

β‖p‖M ≤ sup
v∈X

b(v, p)

‖v‖X

= sup
v∈X

L(v)

‖v‖X

= ‖L‖X ′ .

�

Now it is possible to prove a result which is stronger
than Theorem 3.8: the existence and uniqueness result
still holds if a(·, ·) is coercive on the kernel of b.

Theorem 3.16 Theorem 3.8 still holds if we only as-
sume that a(·, ·) is coercive on Z.

Proof of Theorem 3.16. We use the operator Φ de-
fined in Corollary 3.11 so as to find (u, p) the solution
of the saddle-point problem as u = ũ+Φ(G) where ũ be-
longs to Z, by definition of Φ(G). Thus we aim at finding
ũ ∈ Z which satisfies

a(ũ, ṽ) = L(ṽ)− a(Φ(G), ṽ), ∀v ∈ Z.

Since Z is a closed subspace of X , it is a Hilbert space
and the coercivity assumption on Z leads to the existence
and uniqueness of ũ by the Lax-Milgram theorem. Now
we define

L̃(v) =−a(Φ(G)+ ũ,v)+L(v), ∀v ∈ X .

By definition of ũ, L̃ is zero on Z and, by Corollary 3.15
there exists a unique p ∈ M such that

L̃(v) = b(v, p), ∀v ∈ X .

This exactly expresses the fact that (u = ũ+Φ(G), p) is
the solution of our problem. The estimate on u and p

readily adapts from the proof of Theorem 3.8. �
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The finite dimensional case

Assume that X = Rn and M = Rp. Consider a ba-
sis (φi)i=1,...,n (resp. (ψi)i=1,...,p) of X (resp. M). Any
element u ∈ X and p ∈ M can be decomposed on these
bases as follows

u =
n

∑
i=1

Uiφi, p =
p

∑
j=1

Piψi.

Denoting by U the vector (U1, ...,Un)
t ∈Rn and by P the

vector (P1, ...,Pp)
t ∈Rp, we will use this type of notation

when it is necessary. Although the norms are equivalent
in a finite dimensional space, it is useful to introduce the
following specific ones. For any V ∈ Rn,

‖V‖Rn :=

(
n

∑
i=1

V 2
i

) 1
2

, ‖V‖X := ‖
n

∑
i=1

Viφi‖X .

A similar notation can be introduced for M. Note that
the basis (φi)i=1,...,n may differ from the canonical one
(in particular it is not necessarily orthonormal) so that
the norms ‖·‖X and ‖·‖Rn may differ (although they are
equivalent).

Define F = (〈L,φ1〉X ′,X , ...,〈L,φn〉X ′ ,X)
t ∈ Rn and the

following matrices

A = [a(φ j,φi)]i, j=1,...,n, B = [b(φ j,ψi)]i=1,...,p, j=1,...,n

and assuming, for the sake of simplicity, that G ≡ 0, the
problem consists in studying the linear system

(
A Bt

B 0

)(
U

P

)
=

(
F

0

)
.

Proposition 3.17 (Inf-sup condition in finite dimension)
The inf-sup condition (7) is equivalent to the injectivity
of Bt (hence to the surjectivity of B).

Proof of Proposition 3.17. The inf-sup condition
states that there exists β > 0 such that

∀q ∈ M, sup
v∈X

b(v,q)

‖v‖X

≥ β‖q‖M,

which after introducing the vectors V ∈ Rn and Q ∈ Rp

representing v and q gives

∀Q ∈ Rp, sup
V∈Rn

(BV,Q)Rp

‖V‖X

≥ β‖Q‖M,

Using the equivalence of the norms, we have

∀Q ∈ Rp, sup
V∈Rn

(BV,Q)Rp

‖V‖Rn
≥ β̃‖Q‖Rp ,

with β̃ > 0. Then we obtain

∀Q ∈ Rp, sup
V∈Rn

(BtQ,V )Rn

‖V‖Rn
≥ β̃‖Q‖Rp ,

i.e.
∀Q ∈ Rp, ‖BtQ‖Rn ≥ β̃‖Q‖Rp .

As a consequence, since all the previous steps are equiv-
alent, we have proved that the following are equivalent:

1. b satisfies the inf-sup condition;

2. ∃β̃ > 0, ∀Q ∈ Rp, ‖BtQ‖Rn ≥ β̃‖Q‖Rp .

Let us conclude the proof in two steps:

The inf-sup condition leads to the inequality that
obviously implies that Bt is injective.

Conversely, assume that Bt is injective. This im-
plies that Q ∈ Rp 7→ ‖BtQ‖Rn is a norm on Rp.
Since all the norms on a finite dimension space
are equivalent, we deduce that there exists α > 0

such that

∀Q ∈ Rp, ‖Q‖Rp ≤ α‖BtQ‖Rn .

Thus we have proved that item 2. is satisfied with
β̃ = 1/α, hence item 1. is satisfied. This concludes
the proof.

�

Moreover we can prove the following result:

Theorem 3.18 The following are equivalent:

1. A is coercive on Z = Ker(B),

2. ∃ε > 0, A+At+ 1
ε BtB is s.p.d.

Proof of Theorem 3.18.
Assume that property 1. holds. We proceed by re-

ductio ad absurdum. Assume that property 2. is false.
Thus for any ε > 0 there exists uε such that ‖uε‖ = 1

and

2(Auε ,uε)+
1

ε
‖Buε‖2 ≤ 0. (10)

The sequence {uε} converges, up to an extraction, to an
element u with ‖u‖= 1. Moreover,

‖Buε‖2 ≤ 2ε‖A‖‖uε‖= 2ε‖A‖ −−→
ε→0

0.

Thus Buε → 0, hence Bu = 0 and u ∈ Ker(B). As a(·, ·)
is coercive on Ker(B) and ‖u‖ = 1, we have (Au,u) ≥ α.
Thus for ε sufficiently small, we have (Auε ,uε)> 0 which
is in contradiction with Eq. (10).

Conversely, assume that property 2. holds so that
there exists α > 0 satisfying

∀u, 2(Au,u)+
1

ε
‖Bu‖2 ≥ α‖u‖2.

As a consequence, for u ∈ Ker(B),

(Au,u)≥ α‖u‖2,

and property 2. is proved. �
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3.3 Example 1: A very simple linear constraint
Consider a domain Ω and a non empty subdomain

B ⊂ Ω. Let α > 0 and f ∈ L2(Ω). Define the functional

J(v) :=
1

2

∫

Ω
|∇v|2 + α

2

∫

Ω
v2 −

∫

Ω
f v,

and the space

V =

{
v ∈ H1(Ω),

∫

B
v = 0

}
.

We consider the minimization problem which consists in
finding a (unique) minimizer of J over V , i.e.

{
Find u ∈V such that
J(u) = min

v∈V
J(v).

As V is a closed subspace of H1(Ω) and J is a strictly
convex and coercive functional, then the minimization
problem admits a unique solution. But what kind of
variational formulation is associated to this minimiza-
tion problem?

Remark 3.19 If the space was H1(Ω) only, i.e. with-
out the constraint on the mean value over B, then the
variational formulation would write:





Find u ∈ H1(Ω) such that∫

Ω
∇u ·∇v+α

∫

Ω
uv =

∫

Ω
f v,

for all v ∈ H1(Ω).

This is a classical elliptic problem but it does not take
into account the constraint

∫
B u = 0! And the solution of

the above (unconstrained) problem does not satisfy the
constraint

∫
B u = 0 in general.

Remark 3.20 By the Lax-Milgram theorem, a possible
variational formulation consists in dealing with the con-
straint in the functional space:





Find u ∈V such that∫

Ω
∇u ·∇v+α

∫

Ω
uv =

∫

Ω
f v,

for all v ∈V .

This is also a classical elliptic problem for which the con-
straint on

∫
B u is taken into account through the defini-

tion of the functional space. But the functional space
is not so classical and, if we aim at solving this prob-
lem with the finite element method, we need to define a
finite dimensional subspace of V , denoted Vh, thus build-
ing a basis of Vh; it means in particular that each element
should satisfy the constraint! In order to avoid such a
difficulty, we aim at preserving the natural space H1(Ω)
(for which finite dimensional subspaces are well known
and easy to build) but there is some price to pay: re-
laxing the constraint in the functional space requires the
introduction of a new unknown: a so-called Lagrange
multiplier (associated to the constraint).

The variational framework is

(Q(1))





Find (u,λ ) ∈ H1(Ω)×R such that∫

Ω
∇u ·∇v+α

∫

Ω
uv+λ

∫

B
v =

∫

Ω
f v,

µ
∫

B
u = 0,

for all (v,µ) ∈ H1(Ω)×R.

The above system clearly falls into the scope of the
saddle-point problems. Besides, the second equation
ensures that the solution (if it exists) satisfies the con-
straint whereas the Lagrange multiplier λ in the first
equation quantifies an external force (with support in B)
that is necessary to impose this constraint: indeed we
have

λ

∫

B
v =

∫

Ω
λ 1Bv

so that the first equation can be read as
∫

Ω
∇u ·∇v+α

∫

Ω
uv =

∫

Ω
( f −λ 1B)v.

From the mathematical point of view, we may prove
that this saddle-point problem is well-posed. The main
required properties are obviously satisfied and we only
focus to the inf-sup condition: we aim at identifying
some β > 0 such that

sup
v∈H1(Ω)

λ
∫

B v

‖v‖H1

≥ β |λ |, ∀λ ∈R

or, after an obvious simplification (this is not possible in
general!),

sup
v∈H1(Ω)

∫
B v

‖v‖H1

≥ β .

Consider ũ ≡ 1. As an obvious fact, ũ ∈ H1(Ω) and
∫

B ũ

‖ũ‖H1

=
|B|
|Ω| 1

2

.

Thus we obtain

sup
v∈H1(Ω)

∫
B v

‖v‖H1

≥
∫

B ũ

‖ũ‖H1

=
|B|
|Ω| 1

2

> 0.

The inf-sup condition is satisfied. As a conclusion, the
saddle-point problem (Q(1)) is well-posed.

Exercise 8 Consider a domain Ω and a nonempty sub-
domain B ⊂ Ω. Let α > 0 and f ∈ L2(Ω). Define

J(v) :=
1

2

∫

Ω
|∇v|2 + α

2

∫

Ω
v2 −

∫

Ω
f v,

and V is a subspace of H1(Ω) to be precised. We consider
the minimization problem which consists in finding the
minimizer of J over V , i.e. find u such that

u = argminv∈V J(v).

Define saddle-point formulations associated to the fol-
lowing constraints:
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1. V =
{

v ∈ H1(Ω), v =
∫

B v on B
}
;

2. V =
{

v ∈ H1(Ω), v =
∫

∂B v on B
}
;

3. V =
{

v ∈ H1(Ω),
∫

Ω\B v =
∫

B v on B
}
.

3.4 Example 2: Porous medium
We consider the same example as in section 2.3, namely

the general elliptic equation −div(K ∇u) = f , also ref-
ered to as the Darcy equation, and we propose an alter-
native formulation of this problem. This formulation is
called mixed formulation and reads

{
−div(σ) = f ,

∇u−K −1σ = 0.

One possible weak formulation is the following

(Q
(2)
[a]
)





Find (σ ,u) ∈ (L2(Ω))d ×H1
0 (Ω) such that∫

Ω
K −1σ · τ −

∫

Ω
∇u · τ = 0,

∫

Ω
σ ·∇v =

∫

Ω
f v,

for all (τ,v) ∈ (L2(Ω))d ×H1
0 (Ω).

In this formulation, X = (L2(Ω))d and M = H1
0 (Ω). Thus

σ plays the role of the main unknown whereas u is
the Lagrange multiplier associated with the constraint
−divσ = f . Consequently, we introduce

a(σ ,τ) =

∫

Ω
K −1σ · τ, b(σ ,u) =−

∫

Ω
σ ·∇u.

As K is uniformly bounded and coercive, the bilin-
ear form a is continuous and coercive on X and the bilin-
ear form b is continuous on X ×M. the well-posedness
depends on the inf-sup condition which writes

sup
σ∈(L2(Ω))d

∫
Ω σ ·∇u

‖σ‖L2

≥ β‖u‖H1
0
, ∀u ∈ H1

0 (Ω).

This inequality holds with β = 1 by taking σ = ∇u: in-
deed this leads to

‖∇u‖2
L2

‖u‖H1
0

= ‖u‖H1
0
.

Thus the problem admits a unique solution.

Exercise 9 Build explicitely a right inverse Φ : M′ → X

for the operator

B : X = (L2(Ω))d → M′ = H−1(Ω)
σ 7→ div(σ).

If we formally integrate by parts the term b(σ ,u)
in the previous equations, we can write another weak

formulation as follows

(Q
(2)
[b]
)





Find (σ ,u) ∈ Hdiv(Ω)×L2(Ω) such that∫

Ω
K −1σ · τ +

∫

Ω
u div(τ) = 0,

−
∫

Ω
v div(σ) =

∫

Ω
f v,

for all (τ,v) ∈ Hdiv(Ω)×L2(Ω).

In this formulation, X = Hdiv(Ω) and M = L2(Ω). Here
also σ plays the role of the main unknown and u is the
Lagrange multiplier but the regularity assumed on those
unknowns are not the same (σ is more regular and u is
less regular than in the previous formulation). Conse-
quently, we introduce:

a(σ ,τ) =
∫

Ω
K −1σ · τ, b(σ ,u) =−

∫

Ω
u div(σ).

The bilinear form a is not coercive on X because the
L2−norm of div(σ) is not controlled. But it is coercive
on the kernel of b, denoted Z. Indeed Z is H0,div(Ω) =
{σ ∈Hdiv(Ω), div(σ) = 0} and the L2−norm is equivalent
to the Hdiv−norm on Z. Let us prove that the inf-sup
condition is satisfied:

sup
σ∈Hdiv(Ω)

∫
Ω u div(σ)

‖σ‖Hdiv

≥ β‖u‖L2 , ∀u ∈ L2(Ω).

For this, for a given u ∈ L2(Ω), let us consider the solu-
tion φ ∈ H1

0 (Ω) of −∆φ = u and we define σ = −∇φ ∈
Hdiv(Ω). We have

‖σ‖2
Hdiv

= ‖∇φ‖2
L2 + ‖u‖2

L2.

We test the equation for φ against u and, by the Poincaré
inequality, we find

∫

Ω
|∇φ |2 =

∫

Ω
uφ ≤ ‖u‖L2‖φ‖L2 ≤C‖u‖L2‖∇φ‖L2

so that ‖σ‖Hdiv
≤
√

1+C2‖u‖L2 and we get
∫

Ω u div(σ)

‖σ‖Hdiv

≥ 1√
1+C2

‖u‖L2

which proves the inf-sup condition.

3.5 Example 3: Stokes problem
The strong formulation of the Stokes system in a

bounded connected domain Ω of Rd writes
{

−∆u+∇p = f ,
div(u) = 0,

with homogeneous boundary conditions for the velocity
field u : Ω→Rd and an additional conditon: the pressure
p : Ω →R has zero mean value. Actually, this strong for-
mulation comes from the following minimization prob-
lem: define the functional

J(v) :=
1

2

∫

Ω
|∇v|2 −

∫

Ω
f · v,
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and the space

V = {v ∈ (H1
0 (Ω))d , div(v) = 0},

and find the unique minimizer of J over V , i.e. find u

such that
u = argminv∈V J(v).

As V is a closed subspace of (H1
0 (Ω))d and J is a strictly

convex and coercive functional, then the minimization
problem admits a unique solution. But what kind of
variational formulation is associated to this minimiza-
tion problem?

Remark 3.21 If the space were (H1
0 (Ω))d only, i.e. with-

out the constraint on the divergence, then the variational
formulation would write:





Find u ∈ (H1
0 (Ω))d such that∫

Ω
∇u : ∇v =

∫

Ω
f · v,

for all v ∈ (H1
0 (Ω))d.

Here we used the notation A : B=∑i, j ai, jbi, j for the inner
product in the set of matrices.

The above equation is a classical elliptic problem but
it does not take into account the constraint on the diver-
gence !

Remark 3.22 By the Lax-Milgram theorem, a possible
variational formulation consists in dealing with the con-
straint in the functional space:





Find u ∈V such that∫

Ω
∇u : ∇v =

∫

Ω
f · v,

for all v ∈V .

This is also a classical elliptic problem which does take
into account the constraint on the divergence. But the
functional space is not so classical and, if we aim at solv-
ing this problem with the finite element method, we need
to define a finite dimensional subspace of V , denoted Vh,
thus building a basis of Vh; it means in particular that
each element should satisfy the constraint! In order to
avoid such a difficulty, we aim at preserving the natural
space (H1

0 (Ω))d (for which finite dimensional subspaces
are well known) but there is some price to pay: relaxing
the constraint in the functional space requires the intro-
duction of a new unknown: a so-called Lagrange multi-
plier (associated to the constraint).

The variational framework is

(Q(3))





Find (u, p) ∈ (H1
0 (Ω))d ×L2

0(Ω) such that∫

Ω
∇u : ∇v−

∫

Ω
p div(v) =

∫

Ω
f · v,

∫

Ω
q div(u) = 0,

for all (v,q) ∈ (H1
0 (Ω))d ×L2

0(Ω).

The bilinear forms are continuous and a is coercive on
X = (H1

0 (Ω))d . The inf-sup condition writes:

sup
v∈(H1

0 (Ω))d

∫
Ω p div(v)

‖v‖H1

≥ β‖p‖L2 , ∀p ∈ L2
0(Ω).

In this problem, the pressure p is the Lagrange multi-
plier associated to the incompressibility equation div(u)=
0. Assuming that the solution is regular and proceeding
with integrations by parts, we can see easily that the
strong formulation is recovered.

This inf-sup inequality is a consequence of the fol-
lowing result (which is rather difficult to prove in the
general case) which is an adaptation of Corollary 3.11:

Lemma 3.23 For any function p ∈ L2
0(Ω) there exists

v∈ (H1
0 (Ω))d such that div(v) = p. Besides we can choose

v such that
‖v‖H1

0
≤C‖p‖L2,

where C > 0 only depends on Ω.

A proof of this lemma can found in [10, 3, 14].

4. Basic principles of the Galerkin
approximation

4.1 Elliptic problems: Galerkin approximation
Let V be a Hilbert space, a(·, ·) a coercive continuous

bilinear form and L a continuous linear form. Thus the
problem

(P)





Find u ∈V such that
a(u,v) = L(v),
forall v ∈V .

admits a unique solution thanks to the Lax-Milgram the-
orem (Theorem 2.1). We aim at studying strategies
that allow us to describe the solution by approxima-
tion, by means of computations. This pragmatic con-
straint leads us to target approximation procedures in a
finite-dimesional framework. Different methods can be
described: we will focus on the Galerkin approximation
and the Petrov-Galerkin approximation.

We introduce a finite-dimensional subspace Vh ⊂ V

and looking for an approximate solution in this subspace.
Thus we define the approximate problem

(Ph)





Find uh ∈Vh such that
a(uh,vh) = L(vh),
forall vh ∈Vh.

Exercise 10 1. Prove that the approximate problem
(Ph) is equivalent to a finite-dimensional linear sys-
tem to be determined.

2. Prove that (Ph) is well-posed.
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We may notice that:

Subscript h refers to a mesh size or more generally
to the quality of the approximation of V .

Other approximations may be defined: it is possi-
ble to replace a(·, ·) by a bilinear form ah(·, ·) (for in-
stance using interpolation formula for the approxi-
mation of the integrals formula); it is also possible
to consider spaces Vh which are not included in V

(the approximation is said to be non-conforming)
in which case an extension of the continuous bilin-
ear form a(·, ·) is required in order to be defined on
Vh ×Vh. The well-posedness becomes questionable
in these cases.

It is possible to consider two finite-dimensional
spaces Vh and Wh and look for a solution uh ∈ Vh

with test functions in Wh. This is called a Petrov-
Galerkin approximation (which will be studied in
the next subsection). The well-posedness of the ap-
proximate problem becomes questionable as well.

The interest of such an approximation only makes
sense if we may guarantee that the solution of the ap-
proximate problem uh is indeed an approximation of the
solution u. Thus the error has to be estimated in order
to ensure that the process is valid. Note that by linearity
we have

∀vh ∈Vh, a(u− uh,vh) = 0.

The error eh := u−uh is a−orthogonal to Vh. This is the
basis which will alow us to perform the analysis of the
convergence of the method.

Lemma 4.1 (Error estimate) Under the approxima-
bility property of Vh, i.e.

∀v ∈V, lim
h→0

d(v,Vh) = 0.

then {uh} converges to u in V . Moreover,

‖u− uh‖V ≤ ‖a‖
α

inf
vh∈Vh

‖u− vh‖V =
‖a‖
α

d(u,Vh).

Proof of Lemma 4.1. Let us proceed in three steps.

Step 1. Weak convergence of uh to u. Ap-
plying the Lax-Milgram theorem for (Ph) not only
provides the existence and uniqueness result for
its solution but also provides an estimate on uh,
namely

‖uh‖V ≤ ‖a‖
α

‖L‖V ′ .

Thus the sequence {uh} is bounded in V and, as
a consequence3, there exists ū ∈ V such that, up
to a subsequence still denoted h, {uh} weakly con-
verges to ū. Let us prove that ū = u. For this, let

3We have:

us fix some v ∈ V . By assumption, there exists a
sequence {vh} of elements in V such that

• vh ∈Vh, for all h,

• limh→0 ‖v− vh‖V = 0.

Let us select vh as a test function in the approxi-
mate problem:

a(uh,vh) = L(vh).

Using the “strong-weak convergence” argument4,
we pass to the limit in the left-hand side. Pass-
ing to the limit in the right-hand side as well, we
obtain:

a(ū,v) = L(v).

This result holds for any v ∈V and, as the solution
of the initial problem is unique, ū= u. It shows also
that the sequence {uh} admits a unique adherent
value (or closure point) in V for the weak topol-
ogy. Therefore the whole sequence {uh} weakly
converges to u (by Theorem 4.2).

Step 2. Strong convergence of uh to u. Let
us prove that {uh} strongly converges to u. Let
us choose uh as a test function in the approximate
problem. We have

a(uh,uh) = L(uh)−−→
h→0

L(u) = a(u,u).

Theorem 4.2 Let H be a Hilbert space and {un} a bounded se-
quence in H. Then

• there exists a least one subsequence unk
which weakly con-

verges;

• if, furthermore, the set of weak limits reduces to a single
element, then the whole sequence {un}n weakly converges to
this element .

4The “strong-weak convergence” argument relies on the follow-
ing proposition:

Proposition 4.3 Let E be a normed vector space. We consider
a sequence {xn}n of elements in E, and x ∈ E. Assume that {xn}n

weakly converges to x. Then,

(i) (xn) is bounded;

(ii) if ‖ fn − f‖E ′ → 0, then fn(xn)→ f (x);

In particular, the proof of item (ii) (combined with item (i)) allows
us to prove the“strong-weak convergence” argument in our specific
case:

|a(uh,vh)−a(ũ,v)| = |a(uh,vh)−a(uh,v)+a(uh ,v)−a(ũ,v)|
≤ |a(uh,vh)−a(uh,v)|+ |a(uh,v)−a(ũ,v)|
≤ |(a(uh,vh − v)|+ |a(uh − ũ,v)|
≤ ‖a‖‖uh‖V︸ ︷︷ ︸

(∗)

‖vh − v‖V︸ ︷︷ ︸
(∗∗)

+ |a(uh − ũ,v)|︸ ︷︷ ︸
(∗∗∗)

.

By item (i), (∗) is bounded. Besides (∗∗) goes to 0 as {vh} (strongly)
converges to v and (∗∗∗) goes to 0 as {uh} weakly converges to ũ

in V . Thus a(uh,vh) converges to a(ũ,v).
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Then we get

a(uh − u,uh − u) = a(uh,uh)− a(uh,u)
−a(u,uh)+ a(u,u),

which goes to 0 as h → 0. By coercivity of a, the
last convergence results implies that ‖uh−u‖V −−→

h→0

0.

Step 3. Estimate (Céa’s lemma). Let us prove
the estimate. Taking vh − uh in the orthogonality
equation of eh := u− uh, we have

0 = a(eh,vh − uh) = a(eh,vh − u)+ a(eh,eh).

Then we get

α‖eh‖2
V ≤ ‖a‖‖eh‖V‖vh − u‖V .

This inequality holds for any vh ∈ Vh so that the
proof is concluded.

�

This lemma shows that the approximation error ex-
pressed in the V−norm eh is directly related to the dis-
tance between V and Vh. Thus it is necessary to build
suitable approximation spaces Vh that allow us to esti-
mate the distance between the solution u and Vh.

4.2 Elliptic problems: Petrov-Galerkin approximation
Let us consider a generalized version of the Galerkin

approximation: we consider two finite-dimensional sub-
spaces of V , namely Vh and Wh. We assume that those
spaces have the same dimension, which is a mandatory
condition to expect the underlying linear problem to be
well-posed. The approximate problem reads

(P̃h)





Find uh ∈Vh such that
a(uh,wh) = L(wh),
for all wh ∈Wh.

The coercivity of a(·, ·) on V ×V is not sufficient to en-
sure existence and uniqueness of a solution for this ap-
proximate problem. The well-posedness of the problem
is ensured by the two conditions of the Banach-Nečas-
Babuška theorem (see Theorem 3.3, page 15). Actually,
in finite dimension, the two conditions are equivalent5

5In the case of the finite dimensional framework, consider a
basis (φi)i=1,...,n (resp. (ψi)i=1,...,n) of Vh (resp. Wh). Any element
uh ∈ Vh and wh ∈ Wh can be decomposed on these bases as follows:
uh =∑n

i=1 Uiφi, wh =∑n
j=1 Wiψi. We denote U the vector (U1, ...,Un)

t ∈
Rn and W the vector (W1, ...,Wn)

t ∈Rn and we define the vector F =
(〈L,ψ1〉 , ...,〈L,ψn〉)t and the following matrix A = [a(φ j ,ψi)]i, j=1,...,n.
The problem consists in studying the linear system AU = F.

Eq. (5) should be read as (see also Proposition 3.17, page
20, for a similar proof)

∃α̃ > 0, ∀V ∈ Rn, ‖AV‖Rn ≥ α̃‖V‖Rn ,

and the approximate problem is well-posed if, and only
if, there exists αh > 0 such that

inf
vh∈Vh

(
sup

wh∈Wh

a(vh,wh)

‖vh‖V‖wh‖V

)
≥ αh.

In this case, the approximate problem admits a unique
solution uh which satisfies

‖uh‖V ≤ ‖L‖V ′

αh

.

Note that uh admits an a priori bound only if αh does
not tend to 0 when h tends to 0.

Lemma 4.4 (Error estimate) Assume that

dim(Vh) = dim(Wh),

∀h > 0, ∃αh > 0, inf
vh∈Vh

(
sup

wh∈Wh

a(vh,wh)

‖vh‖V‖wh‖V

)
≥ αh.

Then we have

‖u− uh‖V ≤
(

1+
‖a‖
αh

)
inf

vh∈Vh

‖u− vh‖V .

Assume furthermore that

a uniform inf-sup condition holds:

∃α > 0, ∀h > 0, αh ≥ α,

the approximability property of Vh holds:

∀v ∈V, lim
h→0

d(v,Vh) = 0.

Then {uh} converges to u in V :

lim
h→0

‖u− uh‖V = 0,

Proof of Lemma 4.4. The well-posedness of the ap-
proximate problem is ensured by the two conditions of
the Banach-Nečas-Babuška theorem (see Theorem 3.3,
page 15) and, in finite dimension with dim(Vh)= dim(Wh),
the two conditions are equivalent. Thus uh is uniquely
determined.

Besides the error eh := u−uh satisfies the orthogonal-
ity equation

a(eh,wh) = 0, ∀wh ∈Wh. (11)

Let vh ∈Vh. We have

eh = u− uh = (u− vh)+ (vh − uh).

which means that A is injective;

Eq. (6) states that At is injective, i.e. A is surjective.

Clearly for a n×n linear system the two conditions are equivalent
and any of them provides the well-posedness.
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Using first the inf-sup condition, then (11) and finally
the continuity of a, we get

‖vh − uh‖V ≤ 1

αh

sup
wh∈Wh

a(vh − uh,wh)

‖wh‖V

=
1

αh

sup
wh∈Wh

a(vh − u,wh)

‖wh‖V

≤ ‖a‖
αh

‖u− vh‖V .

Thus we obtain

‖eh‖V ≤
(

1+
‖a‖
αh

)
‖u− vh‖V .

This inequality holds for any vh ∈Vh. Finally the uniform
control on αh and the approximability property of Vh

allow us to conclude the proof. �

In the Petrov-Galerkin approximation, different prop-
erties are required:

control of the approximation error associated to
Vh,

control of the constant in the inf-sup condition:
subspacesVh andWh should not be too a−orthogonal
as h goes to 0.

Example. Let us consider the standard example of the
problem −u′′ = f with Dirichlet boundary conditions in
1D: V = H1

0 (]0,1[), a(u,v) =
∫ 1

0 u′v′.

We take a one-dimensional subspace Vh ⊂V gener-
ated by p(x) = 1−|2x− 1| (its gradient is equal to
2 on [0,1/2[ and −2 on [1/2,1]).

We take a one-dimensional subspace Wh ⊂ V gen-
erated by q(x) = sin(4πx) (its gradient is equal to
4π cos(4πx)).

Observe that the inf-sup condition is not satisfied for
this problem since a(vh,wh) = 0 for any vh ∈Vh,wh ∈Wh.
Indeed, we have

a(p,q) =

∫ 1

0
p′q′

= 8π

(∫ 1
2

0
cos(4πx)dx−

∫ 1

1
2

cos(4πx)dx

)

= 0.

�

Remark 4.5 Even if a(·, ·) is symmetric the resulting
Petrov-Galerkin approximate problem is not necessarily
symmetric.

4.3 Saddle-point problems and Galerkin approxima-
tion
Let X and M be two Hilbert spaces. We consider, as

in section 3.2, the following problem:





Find (u, p) ∈ X ×M such that
a(u,v)+ b(v, p) = L(v),

b(u,q) = G(q),
for any (v,q) ∈ X ×M.

Here L and G are continuous linear forms over X and
M respectively. We have seen that this problem is well
posed if a(·, ·) is coercive on X (or on the kernel of b)
and b satisfies the inf-sup condition

inf
p∈M

(
sup
v∈X

b(v, p)

‖v‖X‖p‖M

)
≥ β > 0.

If we now consider Xh and Mh two finite-dimensional
subspaces of X and M respectively, we may define an
approximate problem:





Find (uh, ph) ∈ Xh ×Mh such that
a(uh,vh)+ b(vh, ph) = L(vh),

b(uh,qh) = G(qh),
for any (vh,qh) ∈ Xh ×Mh.

Remark 4.6 Note that a Petrov-Galerkin approach is
possible by using test functions vh and qh in other spaces
than Xh and Mh. The subsequent analysis is more intri-
cate so that we do not want to enter the details here.

Let us discuss the existence and convergence issue.
What can we say about this approximate problem?

If a(·, ·) is coercive on X , then a is coercive on Xh

with the same constant of coercivity. In order to
guarantee that the approximate problem is well-
posed, it suffices for the inf-sup condition to be
satisfied:

inf
ph∈Mh

(
sup

vh∈Xh

b(vh, ph)

‖vh‖X‖ph‖M

)
≥ βh > 0. (12)

Because of the finite dimensional framework, a com-
pactness argument allows us to show that this con-
dition is satisfied if, and only if,

1) ph ∈ Mh

2) ∀vh ∈ Xh, b(vh, ph) = 0

}
⇒ ph = 0.

If we consider the restriction B′
h of operator B :

M → X ′ as an operator from Mh onto X ′
h, then the

above condition states that B′
h should be injective

(see also Proposition 3.17, page 20). In particular,
the dimension of Mh should be lower than the di-
mension of Xh. Thus, the inf-sup condition is not
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satisfied if Mh is too big with respect to Xh. If the
discrete inf-sup condition is satisfied, there exists
a unique solution (uh, ph) ∈ Xh ×Mh of the approx-
imate problem and we have the following bounds:

‖uh‖X ≤ ‖L‖X ′

α
+

1

βh

(
1+

‖a‖
α

)
‖G‖M′ ,

‖ph‖M ≤
(

1+
‖a‖
α

)(
1

βh

‖L‖X ′ +
‖a‖
β 2

h

‖G‖M′

)
.

If a(·, ·) is coercive only on the kernel of b, then
nothing guarantees that it is coercive on Zh the
kernel of the restriction b : Xh ×Mh → R. Indeed,
we do not have in general the inclusion Zh ⊂ Z bea-
cuse an element vh ∈ Zh is such that b(vh, ph)= 0 for
all ph ∈ Mh but there is no reason why b(vh, p) = 0

for any p ∈ M \Mh. Thus, it is necessary to impose
to a(·, ·) a coercivity constraint on Zh as a supple-
mentary condition in order the discrete problem to
be well-posed.

Then we have the convergence result (the proof read-
ily adapts from the proof of Lemma 4.1):

Lemma 4.7 (Convergence) If there exists β > 0 such
that βh ≥ β for all h> 0 and if d(v,Xh)→ 0 and d(q,Mh)→
0 for all v ∈ X and for all q ∈ M, then (uh, ph) → (u, p)
in X ×M when h goes to 0.

Let us focus on error estimates. We establish the
following result:

Proposition 4.8 Assume that b satisfies the discrete
inf-sup condition (12) for the spaces Xh and Mh. For all
h > 0, there exists a continuous linear operator Ψh :=

X → Xh such that ‖Ψh‖ ≤ ‖b‖
βh

and

∀v ∈ X , ∀qh ∈ Mh, b(Ψhv,qh) = b(v,qh).

Proof of Proposition 4.8. Using the inf-sup condition
(12) and Corollary 3.11, there exists a continuous right
inverse Φh : M′

h → Xh to the operator

Bh : Xh → M′
h

vh 7→ b(vh, ·)

with a norm which is bounded by 1/βh. We define, for
all v ∈ X ,

Ψhv = Φh((Bv)|Mh
).

By construction,

‖Ψhv‖X ≤ 1

βh

‖(Bv)|Mh
‖M′

h
≤ ‖B‖

βh

‖v‖X ,

with ‖B‖= ‖b‖. Moreover, we have

b(Ψhv,qh) = b(Φh((Bv)|Mh
),qh)

=
〈
BhΦh(Bv)|Mh

,qh

〉
M′

h
,Mh

=
〈
(Bv)|Mh

,qh

〉
M′

h
,Mh

= 〈Bv,qh〉M′ ,M
= b(v,qh).

The claim is proved. �

Remark 4.9 We will see that the existence of such an
operator with a norm which does not depend on h is
a necessary and sufficient condition for the spaces Xh

and Mh to satisfy a uniform inf-sup condition for b (see
Lemma 6.1 (Fortin’s lemma), page 45).

Let us now focus on the error estimate.

Lemma 4.10 (Error estimate) Assume that a is co-
ercive on V and that the discrete inf-sup condition (12)
is satisfied, then we have

‖u− uh‖X ≤
(

1+
‖a‖
α

)(
1+

‖b‖
βh

)
d(u,Xh)

+
‖b‖
α

d(p,Mh),

‖p− ph‖M ≤ ‖a‖
βh

(
1+

‖a‖
α

)(
1+

‖b‖
βh

)
d(u,Xh)

+

(
1+

‖b‖
βh

+
‖a‖
βh

‖b‖
α

)
d(p,Mh).

Proof of Proposition 4.10. We introduce

eh := u− uh, πh = p− ph.

We may observe that:

{
a(eh,vh)+ b(vh,πh) = 0, ∀vh ∈ Xh,

b(eh,qh) = 0, ∀qh ∈ Mh.

Let us proceed in two steps:

1. The first equation is rewritten, for any qh ∈ Mh, as

a(eh,vh)+ b(vh, p− qh) = b(vh, ph − qh), ∀vh ∈ Xh.

By using forst the discrete inf-sup condition, then
the equation above, and finally the continuity of a

and b, we have

‖qh − ph‖M ≤ 1

βh

sup
vh∈Xh

b(vh, ph − qh)

‖vh‖X

=
1

βh

sup
vh∈Xh

a(eh,vh)+ b(vh, p− qh)

‖vh‖X

≤ 1

βh

(‖a‖‖eh‖X + ‖b‖‖p− qh‖M).
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By the triangle inequality, we have, for all qh ∈ Mh,

‖πh‖M ≤ ‖p− qh‖M + ‖qh− ph‖M,

hence

‖πh‖M ≤
(

1+
‖b‖
βh

)
d(p,Mh)+

‖a‖
βh

‖eh‖X .

We have thus obtained an estimate on the error πh

in function of the error eh.

2. Let vh ∈ Xh. We define rh = Ψh(u−vh), where Ψh is
the operator defined in (the proof of) Proposition
4.8. By definition, we have that

b(u− vh− rh,qh) = 0, ∀qh ∈ Mh.

As b(eh,qh) = 0 for all qh ∈ Mh, we get

b(uh − (vh + rh),qh) = 0, ∀qh ∈ Mh. (13)

Thus we choose (vh + rh)− uh as a test function in
the first equation and we get

a(eh,(vh + rh)− uh)+ b((vh + rh)− uh,πh) = 0.

Since, by (13), (vh+rh)−uh is b−orthogonal to Mh,
we may replace πh in the second term by p− qh,
with an arbitrary qh ∈ Mh:

a(eh,(vh + rh)− uh)+ b((vh + rh)− uh, p− qh) = 0.

Then we deal with the quantity A := a((vh + rh)−
uh,(vh + rh)− uh). On the one hand, by coercivity,

α‖(vh + rh)− uh‖2
X ≤ |A | . (14)

On the other hand, as uh = u− eh,

A = a((vh + rh)− u+ eh,(vh + rh)− uh)
= a((vh + rh)− u,(vh + rh)− uh)

+a(eh,(vh + rh)− uh)
= a((vh + rh)− u,(vh + rh)− uh)

−b((vh + rh)− uh, p− qh),

We obtain

|A | ≤ ‖a‖‖u− (vh+ rh)‖X‖(vh + rh)− uh‖X

+‖b‖‖vh+ rh − uh‖X‖p− qh‖M. (15)

Combining Eqs. (14) and (15), we get

‖(vh + rh)− uh‖X ≤ ‖a‖
α

‖u− (vh + rh)‖X

+
‖b‖
α

‖p− qh‖M,

where qh ∈ Mh is arbitrary. Hence,

‖(vh + rh)− uh‖X ≤ ‖a‖
α

‖u− (vh+ rh)‖X

+
‖b‖
α

d(p,Mh),

and then

‖u− uh‖X ≤ ‖u− (vh+ rh)‖X + ‖(vh + rh)− uh‖X

≤
(

1+
‖a‖
α

)
‖u− (vh + rh)‖X

+
‖b‖
α

d(p,Mh).

Besides, the definition of rh and the properties of
operator Ψh imply

‖u− (vh+ rh)‖X ≤ ‖u− vh‖X + ‖rh‖X

≤
(

1+
‖b‖
βh

)
‖u− vh‖X .

This holds for all vh ∈ Xh and we thus obtain

‖u− uh‖X ≤
(

1+
‖a‖
α

)(
1+

‖b‖
βh

)
d(u,Xh)

+
‖b‖
α

d(p,Mh).

The pressure estimate is obtained by using the
above estimate.

�

The estimate depends not only on the approxima-
tion error for every space Xh and Mh but also on the
dependency of the constant βh in the inf-sup condition
with respect to the discretization parameter. Let us now
study how approximation spaces (Vh on the one hand, Xh

and Mh on the other hand) can be built.

4.4 Approximation spaces
Some principles rule the choice of approximation spaces

Vh and a basis (φi)i of such spaces. Let us note that
finding a solution uh = ∑ j u jφ j of a variational problem
consists in solving a linear system with matrix A defined
by ai j = a(φ j,φi). In practive, it is thus necessary to:

compute the coefficients,

build the most simple matrix, i.e. the related sys-
tem should be “easily” solved.

The definition of the space and the choice of a basis is
crucial. Let us discuss some examples:

If we define Vh as the set of polynomial functions
of degree less than N, with its canonical basis de-
fined by the monomials, then the related matrix
is likely to be dense. Of course, if we choose a
basis of polynomials which are orthogonal for the
scalar product defined by a (when a is symmetric,
positive definite), then the matrix is diagonal and
solving the related linear system is easy. This can
possibly done by using a Gram orthonormalisation
process.
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An efficient method consists in defining the ap-
proximation space as the subspace generated by
the eigenfunctions of the operator that defines the
PDE. If the solution is regular, we can prove under
suitable assumptions that the method is quite effi-
cient: this is the very basis of the so-called spectral
methods.

Example. We denote VN the space generated by
the first N eigenfunctions of the Dirichlet-Laplace
operator in 1D (i.e. x 7→ sin(kπx) on ]0,1[, then we
have (Parseval’s identity):

∀u ∈ Hm(]0,1[), d(u,VN)≤
Ck

Nm
‖u‖Hm .

�

This method has a major drawback, as we only
know the eigenfunctions of the operator in a lim-
ited number of cases. In the other cases, we use the
eigenfunctions of another operator with the secret
hope that it will work fine. Besides, the matrix
is dense, which may lead to heavy computational
costs.

In the next section, we will focus on the finite
element method. The main idea consists in cut-
ting the domain into small pieces or elements and
defining the approximation space as a set of piece-
wise regular functions with a particular structure
on each element. Piecewise polynomials are classi-
cally used in this prospect.

5. Examples of finite element spaces

5.1 Finite elements in 1D: P1 finite element

Approximation space P1 in 1D. We consider Ω =
]0,1[ et we target the definition of a suitable approxima-
tion space for V = H1(Ω). For this we mesh the domain
Ω. In the 1D framework: the domain is divided in seg-
ments [xi,xi+1], i ∈ {0, ...,N} so that xi < xi+1 and x0 = 0

and xN+1 = 1. We define the mesh size h := supi |xi+1 − xi|
and we denote by Ki := [xi,xi+1] the cells of the mesh.

Let us consider the set of piecewise affine functions:

Vh = {u ∈V, u|Ki
∈ P1},

where P1 is the set of polynomials of degree 1. No-
tice that we consider a conforming approximation space
since, by construction, Vh ⊂V .

Lemma 5.1 The space Vh writes

Vh = {u ∈C0(Ω̄), u|Ki
∈ P1},

and, moreover, the mapping

Φ : u 7→ (u(x0), ...,u(xN+1))

is an isomorphism from Vh onto RN+2. In particular
dim(Vh) = N + 2.

Proof of Lemma 5.1. In 1D, H1(Ω) ⊂ C0(Ω̄). Con-
versely, continuous functions that are affine on each ele-
ment belong to H1(Ω). The properties of the mapping,
i.e. Φ is linear and bijective, follow from the fact that a
piecewise affine function is uniquely defined by its values
at the nodes of the mesh. �

Remark 5.2 The choice of a conforming approxima-
tion space may have important consequences: assume
that we are interested in V = H2(Ω). Then we can show
that {u∈V, u|Ki

∈ P1} is an approximation space with di-
mension 2 (it is the set of affine functions over the whole
domain)! Thus it is clear that this approximation has a
very limited interest for the numerical approximation of
a variational formulation dealing with H2(Ω).

As Φ is bijective, any element u∈Vh can be identified
to Φ(u) ∈ RN+2. The elements of Φ(u) are refered to as
degrees of freedom in the approximation space Vh.

When the degrees of freedom take the form u 7→ u(a)
with a ∈ Ω̄, we refer the method to Lagrange finite el-
ements. The points ai are the nodes associated to the
approximation space. In the case of P1 finite elements,
the nodes ai coincide with the points xi which define the
mesh. However, this is not always the case as we will
see below for instance for the P2 elements.

Definition 5.3 We denote ei for i = 0, ...,N +1 the vec-
tors of the canonical basis of RN+2. We denote φi the
shape function associated to the node xi such that Φ(φi)=
ei. Thus the functions φi ∈Vh are defined by the property

φi(x j) = δi j , ∀i, j ∈ {0, ...,N + 1},

see Figure 3.

Let us estimate the approximation error associated
to Vh. For this let us introduce the notion of interpola-
tion operator. We denote by v 7→ |v|Hk the seminorm on
Hk(Ω), defined by

|v|Hk =

(
∑

|α |=k

‖∂ α v‖2
L2

) 1
2

,

with the consistent convention:

H0(Ω) = L2(Ω), |v|H0 = ‖v‖L2 .

Definition 5.4 (Interpolation operator I 1
h ) The in-

terpolation operator I 1
h from V onto Vh is defined as

∀u ∈V, I 1
h u = Φ−1

(
u(x0), ...,u(xN+1)

)
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xi−1 xi xi+1

φi−1

φi

φi+1

Figure 3. P1 finite element in 1D: global shape functions φi−1, φi and φi+1.

i.e.

∀u ∈V, ∀x ∈ Ω̄, I 1
h u(x) =

N+1

∑
i=0

u(xi)φi(x).

Let us notice that if u ∈ H1
0 (Ω), then I 1

h u ∈ H1
0 (Ω)

and thus
Vh,0 :=Vh ∩H1

0 (Ω)

is a conforming approximation space for H1
0 (Ω). Let us

now derive the estimates on I 1
h .

We illustrate the shape of the P1 interpolation for a
given function in Figure 5 (solid black line).

Theorem 5.5 (Properties of I 1
h ) The following prop-

erties hold:

1. There exists C > 0 such that

∀u ∈V, ‖I 1
h u− u‖L2 ≤Ch |u|H1 , (16)

∀u ∈V,
∣∣I 1

h u− u
∣∣
H1 ≤C |u|H1 . (17)

2. There exists C > 0 such that

∀u ∈V ∩H2(Ω), ‖I 1
h u− u‖L2 ≤Ch2 |u|H2 , (18)

∀u ∈V ∩H2(Ω),
∣∣I 1

h u− u
∣∣
H1 ≤Ch |u|H2 . (19)

3. We have

∀u ∈V, lim
h→0

‖I 1
h u− u‖H1 = 0.

In particular, for all u ∈V , lim
h→0

d(u,Vh) = 0.

Remark 5.6 The estimate (19) cannot be improved even
if u is more regular. Besides Eq. (16)–(19) can be gath-
ered in the following estimate: for all m ∈ {0,1}, for all
u ∈ Hm+1(Ω),

‖I 1
h u− u‖L2 + h

∣∣I 1
h u− u

∣∣
H1 ≤Chm+1 |u|Hm+1 . (20)

Proof of Proposition 5.5. The basic idea relies on
the analysis of I 1

h u− u on each element of the mesh.
Let i ∈ {0, ...,N} and let x ∈ Ki.

Step 1. Derivation of estimates (16) and (17). For
x ∈ [xi,xi+1] we have

I 1
h (x) =

ui(xi+1 − x)+ ui+1(x− xi)

hi

(21)

with ui = u(xi) and hi = xi+1 − xi. Thus

I 1
h (x)−u(x)=

(ui − u(x))(xi+1 − x)+ (ui+1− u(x))(x− xi)

hi

,

so that we obtain by the Cauchy-Schwarz inequality,
∣∣I 1

h (x)− u(x)
∣∣ ≤ |ui − u(x)|+ |ui+1 − u(x)|

≤
∣∣∣∣
∫ x

xi

u′(t)dt

∣∣∣∣+
∣∣∣∣
∫ xi+1

x
u′(t)dt

∣∣∣∣

≤ 2h
1
2
i

(∣∣∣∣
∫ xi+1

xi

∣∣u′(t)
∣∣2 dt

∣∣∣∣
) 1

2

and then
∫ xi+1

xi

∣∣I 1
h (x)− u(x)

∣∣2 dx ≤ 4h2
i

(∣∣∣∣
∫ xi+1

xi

∣∣u′(t)
∣∣2 dt

∣∣∣∣
)

and, by summation,

‖I 1
h u− u‖L2 ≤ 2h‖u′‖L2 = 2h |u|H1 , (22)

which is the estimate described in Eq. (16).
Besides, a consequence of the above estimate is that

‖I 1
h u‖L2 ≤C‖u‖H1 .

Back to Eq. (21), we have

∣∣(I 1
h u)′(x)

∣∣ =

∣∣∣∣
ui+1 − ui

hi

∣∣∣∣

=
1

hi

∣∣∣∣
∫ xi+1

xi

u′(t)dt

∣∣∣∣

≤ 1

h
1
2
i

(∫ xi+1

xi

∣∣u′(t)
∣∣2 dt

) 1
2

,
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by the Cauchy-Schwarz inequality, hence
∫ xi+1

xi

∣∣(I 1
h u)′(x)

∣∣2 dx ≤
∫ xi+1

xi

∣∣u′(t)
∣∣2 dt.

Thus we have ‖(I 1
h u)′‖L2 ≤ ‖u′‖L2 , i.e.

∣∣I 1
h u
∣∣
H1 ≤ |u|H1 .

Thus we obtain
∣∣I 1

h u− u
∣∣
H1 ≤

∣∣I 1
h u
∣∣
H1 + |u|H1 ≤ 2 |u|H1 ,

which is the estimate described in Eq. (17).

Remark 5.7 The estimate proves that if u ∈ V , then
I 1

h u weakly converges to u in H1(Ω) when h → 0. As
{I 1

h u} is bounded in H1(Ω), there is a subsequence {hn}
such that hn → 0 and {I 1

hn
u} weakly converges to some u∗

in H1(Ω). By Eq. (22) the strong limit of I 1
hn

u in L2 is u.
By uniqueness of the limit in the sense of distributions,
we conclude that the weak limit in H1 of this sequence
is also u, hence u∗ = u. By uniqueness of the adherent
value (or closure point), the whole sequence I 1

h u weakly
converges to u in H1, see Theorem 4.2. In fact we will
prove below that I 1

h u strongly converges to u in H1.

Step 2. Derivation of estimates (18) and (19). By
Eq. (21),

(I 1
h u)′(x)− u′(x) =

ui+1 − ui

hi

− u′(x).

Using Taylor’s formula, we have

ui = u(x)+ (xi− x)u′(x)+Ri(x),
ui+1 = u(x)+ (xi+1 − x)u′(x)+Ri+1(x),

with

Ri(x) :=
1

2

∫ 1

0
(1− t)u′′(x+ t(xi− x))(xi − x)2 dt.

We obtain the following estimates:

We write (∗) = I 1
h u(x)− u(x) as:

(∗) = (ui − u(x))(xi+1 − x)+ (ui+1− u(x))(x− xi)

hi

=
(xi − x)u′(x)(xi+1 − x)+ (xi+1− x)u′(x)(x− xi)

hi︸ ︷︷ ︸
=0

+
Ri(x)(xi+1 − x)+Ri+1(x)(x− xi)

hi

hence, by Jensen’s inequality6,
∣∣I 1

h (x)− u(x)
∣∣2

≤ R2
i (x)(xi+1 − x)+R2

i+1(x)(x− xi)

hi

≤ R2
i (x)+R2

i+1(x).

6By convexity of x 7→ x2, we have, for τ ∈ [0,1],

(a(1− τ)+bτ)2 ≤ (1− τ)a2 + τb2.

We deduce
∫ xi+1

xi

∣∣I 1
h − u

∣∣2 ≤
∫ xi+1

xi

R2
i +

∫ xi+1

xi

R2
i+1 (23)

Let us now estimate
∫ xi+1

xi
R2

i . First we have

∣∣R2
i (x)

∣∣ ≤1

2

∫ 1

0

∣∣u′′(x+ t(xi− x))
∣∣2 (xi − x)4 dt

≤h3
i

2

∫ x

xi

∣∣u′′
∣∣2

≤h3
i

2

∫ xi+1

xi

∣∣u′′
∣∣2 ,

(24)

which yields

∫ xi+1

xi

R2
i ≤

h4
i

2

∫ xi+1

xi

∣∣u′′
∣∣2 ,

ans the same estimate for Ri+1. Putting this in-
equality into Eq. (23), we get

∫ xi+1

xi

∣∣I 1
h u− u

∣∣2 ≤ h4
i

∫ xi+1

xi

∣∣u′′
∣∣2 .

which provides Eq. (18) by summation over i.

We write (∗∗) := (I 1
h u)′(x)− u′(x) as:

(∗∗) = ui+1 − ui

hi

− u′(x) =
Ri+1(x)−Ri(x)

hi

,

and then, by (24),

∣∣(I 1
h u)′(x)− u′(x)

∣∣2

≤ 2

h2
i

(|Ri(x)|2 + |Ri+1(x)|2)

≤ hi

∫ x

xi

∣∣u′′(t)
∣∣2 dt + hi

∫ xi+1

x

∣∣u′′(t)
∣∣2 dt.

Thus,

∫ xi+1

xi

∣∣(I 1
h u)′− u′

∣∣2 ≤ h2
i

∫ xi+1

xi

∣∣u′′(t)
∣∣2 dt,

which provides Eq. (19) by summation over i.

Step3. Convergence in H1. By density of H2(Ω)
in H1(Ω), the proof may be concluded. For every u ∈
H1(Ω), and any n ≥ 1, there exists u(n) ∈ C∞(Ω) such
that

‖u′− u′(n)‖L2 <
1

n
, ∀n ≥ 1.

Since I 1
h is a linear mapping, and using the uniform

estimate (17), we have for any n ≥ 1 and any h > 0

‖(I 1
h u)′− (I 1

h u(n))
′‖L2 ≤C‖u′− u′(n)‖L2 ≤ C

n
,
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whereC does not depend on h. By the triangle inequality,
and (19), it comes

‖u′− (I 1
h u)′‖L2 ≤ ‖u′− u′(n)‖L2 + ‖u′(n)− (I 1

h u(n))
′‖L2

+‖(I 1
h u)′− (I 1

h u(n))
′‖L2

≤ C
n
+Ch

∣∣u(n)
∣∣
H2 .

It follows that, for any n ≥ 1,

limsup
h→0

‖u′− (I 1
h u)′‖L2 ≤ C

n
.

Letting n → ∞, we conclude that

limsup
h→0

‖u′− (I 1
h u)′‖L2 ≤ 0,

which proves the claim. �

From the reference element K̂ to element Ki.
The previous analysis is done on each cell Ki sepa-

rately and then global estimates are obtained by summa-
tion over all the cells. In view of the generalisation of the
analysis to higher dimensions and more general approx-
imation spaces, it is interesting to rewrite the previous
analysis by means of changes of variable that transform
each element Ki into a single reference element K̂. In
this strategy, we only need to analyse the interpolation
properties on the reference element, and to analyse the
properties of the change of variables.

The advantages are twofold: 1) computations are eas-
ier and 2) the method applies for higher order finite ele-
ments in higher dimension!

Let us give the main idea of the process in the case of
the P1 finite element in 1D that we just analysed before.
We consider the unit interval K̂ = [0,1] as a reference
element and we denote by I 1

0 the Lagrange interpola-
tion operator of degree 1 on this interval with the nodes
{0,1}. If we assume that there exists C > 0 such that

∀v ∈ H1(K̂), ‖I 1
0 v− v‖L2(K̂) ≤C |v|H1(K̂) , (25)

∀v ∈ H1(K̂),
∣∣I 1

0 v− v
∣∣
H1(K̂)

≤C |v|H1(K̂) , (26)

∀v ∈ H2(K̂), ‖I 1
0 v− v‖L2(K̂) ≤C |v|H2(K̂) , (27)

∀v ∈ H2(K̂),
∣∣I 1

0 v− v
∣∣
H1(K̂)

≤C |v|H2(K̂) , (28)

then we can deduce immediately the results stated in
Theorem 5.5. Indeed, for i ∈ {0, ...,N} we recall the no-
tation Ki = [xi,xi+1] and we introduce the affine mapping
that transforms any cell Ki to the unit cell K̂ = [0,1]:

Definition 5.8 (Affine mapping Ti) We introduce the
affine change of variables

Ti : K̂ → Ki

t 7→ (1− t)xi+ txi+1.

Straightforward computations lead to the following
properties:

Proposition 5.9 (Properties of Ti) For any function
φ ∈ H1(Ki),

‖φ ◦Ti‖L2(K̂)=
1√
hi

‖φ‖L2(Ki)
, |φ ◦Ti|H1(K̂) =

√
hi |φ |H1(Ki)

.

Moreover we have

(I 1
h u)◦Ti = I 1

0 (u ◦Ti). (29)

Now let us derive the estimates:

We apply Eq. (25) to φ = u ◦Ti and use (29):

‖(I 1
h u)◦Ti− u ◦Ti‖L2(K̂) ≤C |u ◦Ti|H1(K̂) ,

then with the change of variables

‖I 1
h u− u‖L2(Ki)

≤Chi |u|H1(Ki)
,

By summation over i, we get the estimate (16).

The other proofs can be adapted in a similar way
to derive estimates (17), (19) and (18).

As a conclusion, the estimate of the interpolation error
over a fixed interval K̂ allows us to derive the local esti-
mate over the elements of the mesh.

Example of P1 approximation of an elliptic prob-
lem in 1D. Consider Ω =]0,1[ and

{
−(K u′)′+αu = f , in Ω,

u = 0, on {0,1},

with α ≥ 0, f ∈ L2(Ω), K ∈ L∞(Ω) and inf(K )> 0. The
corresponding variational formulation writes

(P)





Find u ∈V such that
a(u,v) = L(v),
for all v ∈V ,

with V = H1
0 (Ω) and

a(u,v) =

∫ 1

0
K u′v′+α

∫ 1

0
uv,

L(v) =

∫ 1

0
f v.

Problem (P) admits a unique solution by the Lax-Milgram
theorem. The Galerkin approximation of the elliptic ab-
stract problem consists in solving the following problem

(Ph)





Find uh ∈Vh,0 such that
a(uh,vh) = L(vh),
for all vh ∈Vh,0.

Problem (Ph) admits a unique solution uh by the Lax-
Milgram theorem. By Theorem 5.5 we have d(u,Vh,0)≤
‖u−I 1

h u‖V → 0 as h → 0. Combined with Céa’s lemma,
see Lemma 4.1, we deduce the convergence of uh towards
u without any additional assumption. Moreover, we can
estimate the error as follows.
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Theorem 5.10 (P1 error estimate) Assume that the
solution of (P) is regular, i.e. u ∈ H2(Ω), then

‖u− uh‖V ≤C
‖a‖
α

h |u|H2 .

In some cases the elliptic problem has some regular-
ity properties which imply that, if the source term is L2

then the solution is H2. In the current case this prop-
erty holds if A is sufficiently regular (Lipschitz continu-
ity is enough) and we get the elliptic regularity property:
there exists C > 0 such that the unique solution of the
variational problem belongs to H2(Ω) and satisfies

‖u‖H2(Ω) ≤C‖ f‖L2(Ω).

The error estimate becomes:

‖u− uh‖V ≤Ch‖ f‖L2(Ω).

Let us discuss the derivation of estimates in a weaker
norm (e.g. in L2(Ω)). In order to derive a new estimate,
we need to assume furthermore that the adjoint problem7

satisfies a so called elliptic regularity property: there ex-
ists C > 0 such that for all v ∈ L2(Ω) the unique function
φv ∈V such that

a(w,φv) = (v,w)L2 , ∀w ∈V

satisfies

φv ∈ H2(Ω), ‖φv‖H2(Ω) ≤C‖v‖L2(Ω).

In our example this property is clearly satisfied be-
cause the adjoint problem is identical to the initial one
by symmetry of the bilinear form a.

Theorem 5.11 (Aubin-Nitsche) Assume that the ad-
joint problem of (P) satisfies the elliptic regularity prop-
erty. Then the solution u of (P) and its P1 finite element
approximation uh satisfy

‖u− uh‖L2 ≤Ch‖u− uh‖H1 .

In particular, if u ∈ H2(Ω), Theorem 5.10 leads to

‖u− uh‖L2 ≤Ch2 |u|H2 .

Proof of Theorem 5.11. Denote eh = u−uh ∈V . Tak-
ing v = w = eh in the adjoint problem, we get

‖eh‖2
L2(Ω) = a(eh,φeh

).

As the error eh := u−uh is a−orthogonal to Vh, we have

‖eh‖2
L2(Ω)

= a(eh,φeh
−I 1

h φeh
)

≤ ‖a‖‖eh‖V‖φeh
−I 1

h φeh
‖H1

≤ Ch‖eh‖V‖φeh
‖H2

≤ Ch‖eh‖V‖eh‖L2(Ω),

7This means that the unknown is now the second variable of
the bilinear form a and the test function is the first variable of a.

hence the result. �

Actually the above result is somehow general and not
particular to P1 approximation.

Practical aspects related to the computation of
the approximate solution.

Exercise 11 Let {φi}i=1,...,N be a basis for Vh,0. Prove
that (Ph) is equivalent to a linear system (to be deter-
mined): find U ∈ RN such that A ·U = b, where A ∈
MN×N(R) and b ∈ RN.

A function uh ∈ Vh,0 takes the form uh = ∑N
i=1 uiφi,

since the degrees of freedom corresponding to boundary
nodes are 0. Hence, this solution is completely deter-
mined by U := (ui)i=1,...,N . The variational formulation
then takes the form A ·U = b with

A = (a(φ j,φi))1≤i, j≤N , b = (L(φi))1≤i≤N .

In our example, matrix A splits into A(r)+αA(m)

Ai j =

∫ 1

0
K φ ′

i φ ′
j

︸ ︷︷ ︸
A
(r)
i, j

+α

∫ 1

0
φiφ j

︸ ︷︷ ︸
A
(m)
i, j

where A(r) is the so-called rigidity matrix whereas A(m)

is the so-called mass matrix. In the case of the P1 finite
element, integrals are zero as soon as |i− j|> 1 because
the supports of φi and φ j are disjoint in that case. Thus
the remaining computations are the following ones:

A
(r)
i,i−1 = − 1

h2
i−1

∫ xi

xi−1

K ,

A
(r)
i,i =

1

h2
i−1

∫ xi

xi−1

K +
1

h2
i

∫ xi+1

xi

K ,

A
(r)
i,i+1 = − 1

h2
i

∫ xi+1

xi

K ,

A
(m)
i,i−1 =

∫ xi

xi−1

φi−1 φi =
hi−1

6

A
(m)
i,i =

∫ xi+1

xi−1

φ2
i =

hi−1 + hi

3
,

A
(m)
i,i+1 =

∫ xi+1

xi

φi φi+1 =
hi

6

with suitable adaptations for i = 1 and i = N.

Proposition 5.12 The matrix A is tridiagonal, sym-
metric and positive-definite. Moreover it satisfies the
discrete maximum principle

A−1 ≥ 0.

Proof of Proposition 5.12. The first part follows from
the fact that A is a Gram matrix8 of (φi)i=1,...,N in V for

8A Gram matrix G of a set of vectors (v1, ...,vn) in an inner
product space is the self-adjoint matrix of inner products, whose
entries are given by Gi j = (vi,v j). A Gram matrix is positive semi-
definite.
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some scalar product. The discrete maximum principle
consists in showing that A is a M-matrix9. �

In practical computations, integrals are numerically
computed with quadrature formula. This may induce
additional work in order to guarantee that this process
does not induce a loss of precision.

5.2 Finite elements in 1D: P2 finite element

Approximation space P2 in 1D. Assume that the so-
lution of a problem is much more regular (e.g of class
C∞) than it is expected from the variational formulation
of the problem. The P1 finite element method does not
allow us to get a better precision: indeed the precision
of the interpolation operator which is associated to the
approximation space does not increase when increasing
the regularity of the interpolated function. In order to
take advantage from the regularity of the solution (with-
out modifying the mesh) it is necessary to adapt the
approximation space. Instead of considering piecewise
affine functions, we now consider piecewise quadratic
functions.

Using the same notations as before, we introduce the
center of the elements x

i+ 1
2
=

xi+xi+1

2 , for i = 0, ...,N. Let

us now consider the set of piecewise quadratic functions:

Vh = {u ∈V, u|Ki
∈ P2},

where P2 is the set of polynomials of degree 2.

Lemma 5.15 The space Vh writes

Vh = {u ∈C0(Ω̄), u|Ki
∈ P2},

and, moreover, the mapping

Φ : u 7→ (u(x0),u(x 1
2
),u(x1),u(x 3

2
), ...,u(x

N+ 1
2
),u(xN+1))

is an isomorphism from Vh onto R2N+3. In particular
dim(Vh) = 2N + 3.

Proof of Lemma 5.15. The injectivity of Φ comes
from the fact that a polynomial of degree 2 with three
distinct roots is necessary zero. Surjectivity of Φ emerges

9We recall the definition:

Definition 5.13 A so-called M-matrix which satisfies the follow-
ing conditions:

it is a Z-matrix, i.e. off-diagonal entries are less than or
equal to zero;

the real part of the eigenvalues are positive.

Besides we recall the following property

Proposition 5.14 The following are equivalent:

A is a non-singular M-matrix;

A is inverse-positive. That is, A−1 exists and A−1 ≥ 0.

from the existence of a Lagrange interpolation polyno-
mial on each Ki. �

�
Although the degree of the polynomials has been

increased, we do not build a conforming approximation
space for H2 since the continuity of the derivatives at
the interfaces would be required.

Each of the coordinates functions of Φ is a linear
form on Vh which is called degree of freedom. They all
consist in evaluating the function at some point, which
leads to the Lagrange terminology. The definition of the
shape functions for the P2 finite element follows the same
rule as for the P1 finite element, up to the dimension
modifications.

The shape functions (φi)i and (φ
i+ 1

2
)i are defined by

φi(x j) = δi j, ∀ j ∈ {0, ...,N + 1},
φi(x j+ 1

2
) = 0, ∀ j ∈ {0, ...,N},

φ
i+ 1

2
(x j) = 0, ∀ j ∈ {0, ...,N + 1},

φ
i+ 1

2
(x

j+ 1
2
) = δi j, ∀ j ∈ {0, ...,N},

see Figure 4. Thus

the support of φi is Ki−1 ∪Ki;

the support of φ
i+ 1

2
is Ki.

Definition 5.16 (Interpolation operator I 2
h ) The in-

terpolation operator I 2
h from V onto Vh is defined as

I 2
h u(x) =

N+1

∑
i=0

u(xi)φi(x)+
N

∑
i=0

u(x
i+ 1

2
)φ

i+ 1
2
(x),

for all u ∈V , for all x ∈ Ω.

Let us notice that if u ∈ H1
0 (Ω), then I 2

h u ∈ H1
0 (Ω)

and thusVh∩H1
0 (Ω) is a conforming approximation space

for H1
0 (Ω). As before, I 2

h is a continuous projection of
H1(Ω) into itself and we can derive the following inter-
polation properties:

Theorem 5.17 (Properties of I 2
h ) There exists C >

0 such that, for all m ∈ {0,1,2}, for all u ∈ Hm+1(Ω),

‖I 2
h u− u‖L2 + h

∣∣I 2
h u− u

∣∣
H1 ≤Chm+1 |u|Hm+1 .

Remark 5.18 Notice that if u ∈ H2(Ω) the interpola-
tion result does not provide a better estimate than P1

finite elements. The use of such element should be moti-
vated by the construction of an approximate solution for
a solution which belongs to H3(Ω).

Proof of Theorem 5.17. The proof is similar to the
proof of Theorem 5.5. We can also use the technique
of the change of variables by reducing the study to the
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xi−1 x
i− 1

2
xi x

i+ 1
2

xi+1

φ
i− 1

2
φi

φ
i+ 1

2

Figure 4. P2 finite element in 1D: shape functions φ
i− 1

2
, φi and φ

i+ 1
2
.

The original function

P2 interpolant on 6 elements

P1 interpolant on 6 elements

P2 interpolant on 3 elements

Figure 5. A smooth function (dashed line) and different kind of interpolations.
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interpolation properties of the operator on the unit do-
main [0,1]. �

Example of P2 approximation of an elliptic prob-
lem in 1D. Considering the P2 approximation space as
Vh and Vh,0 =Vh ∩H1

0 (Ω). We obtain the convergence in
the general case because d(u,Vh,0) → 0 as h → 0 for all
u ∈V .

Theorem 5.19 (P2 error estimate) Assume that the
solution u ∈ V of the problem belongs to H3(Ω). Then
we have

‖u− uh‖H1(Ω) ≤ Ch2 |u|H3(Ω) ,

‖u− uh‖L2(Ω) ≤ Ch3 |u|H3(Ω) .

Proof of Theorem 5.19. The first property follows
from the above analysis whereas the second property
follows from the Aubin-Nitsche trick, see the proof of
Theorem 5.11. �

We illustrate the differences between various interpo-
lations of a same function in Figure 5.
Practical aspects related to the computation of
the approximate solution. In practice the number-
ing of the unknowns is done continuously between 1 and
2N + 1 (we recall that x0 and xN+1 are not taken into
account because of the boundary conditions). More pre-
cisely, any k ∈ {1, ...,2N+1} can be written as k = 2i+ p,
with p∈{0, ...,N} and p∈{0,1}. We will denote k= [i, p].
The numbering of the basic functions writes:

ψk = ψ[i,p] =

{
φi, if p = 0,
φ

i+ 1
2
, if p = 1.

In the same way the numbering of the unknowns Uk

related to the coordinates of the solution uh in the basis
{ψk} follows the same rule.

Let us consider the matrix A = (ak,l)kl with

ak,l = a(ψl ,ψk) =
∫

Ω
ψ ′

kψ ′
l .

If k = [i,0] the support of ψk is Ki−1 ∪Ki. As a
consequence the only coefficients l for which ak,l

may be non-zero are:

• for l = k = [i,0],

ak,k =
∫ xi+1

xi−1

∣∣φ ′
i

∣∣2 ,

• for l = k+ 1 = [i,1],

ak,k+1 =
∫ xi+1

xi

φ ′
i φ ′

i+ 1
2

,

• for l = k+ 2 = [i+ 1,0],

ak,k+2 =

∫ xi+1

xi

φ ′
i φ ′

i+1,

• for l = k− 1 = [i− 1,1],

ak,k−1 =
∫ xi

xi−1

φ ′
i φ ′

i− 1
2

,

• for l = k− 2 = [i− 1,0],

ak,k−2

∫ xi

xi−1

φ ′
i φ ′

i−1.

If k = [i,1] the support of ψk is Ki. As a conse-
quence the only coefficients l for which akl may be
non-zero are:

• for l = k = [i,1],

ak,k =

∫ xi+1

xi

∣∣∣φ ′
i+ 1

2

∣∣∣
2

,

• for l = k+ 1 = [i+ 1,0],

ak,k+1 =
∫ xi+1

xi

φ ′
i+ 1

2

φ ′
i+1,

• for l = k− 1 = [i,0],

ak,k−1 =

∫ xi+1

xi

φ ′
i+ 1

2

φ ′
i .

Thus the matrix A is pentadiagonal. The linear sys-
tem to solve is more complicated than with the P1 ap-
proximation. The matrix is symmetric positive-definite
but it is not an M-matrix and the discrete maximum
principle is not satisfied anymore.

5.3 Pk finite element in dimension d > 1

Meshes. We assume that Ω is a bounded, connected,
polygonal in 2D or polyhedral in 3D.

Proposition 5.20 Let T be a polygonal mesh, i.e. a
set of polygonal/polyhedral cells (K)K∈T such that

Ω̄ = ∪K∈T K̄, K̊ ∩ L̊ = /0, if K 6= L.

Let m ∈ N \ {0} and u a function defined on Ω. The
following properties are equivalent:

u ∈ Hm(Ω);

For all K ∈T , u|K ∈ Hm(K) and, for all K 6= L such
that the codimension of K̄∩ L̄ is 1, then the trace of
∂ α u|K and the trace of ∂ α u|L coincide on ∂K ∩∂L,
for any |α| ≤ m− 1.

If the properties hold, then for all |α| ≤ m,

‖∂ α u‖L2(Ω) = ∑
K∈T

‖∂ α u|K‖L2(K).
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Figure 6. Admissible mesh and non-admissible mesh.
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This result explains how it is possible to design fi-
nite element spaces that are Hm−conforming when the
dimension is greater than 1. We take piecewise regular
functions with additional constraint: the jumps of u and
its derivatives at the interfaces of the mesh have to be
zero. Then the geometrical conformity of the mesh is
essential: indeed in Figure 6 the atypical node in the
non-admissible mesh cannot be associated to a degree
of freedom of the approximation space: if we consider
a P1 approximation, then the value of the approximate
solution in this particular node is related to the values
at the vertices of triangle T10.

We will now consider a mesh of Ω made of simplices,
i.e. the convex hulls of d + 1 points that do not belong
to an hyperplane. Roughly speaking they are triangles
in 2D, tetrahedra in 3D etc.

Simplicial finite element. The Pk simplicial La-
grange element. As it has been previously outlined,
the finite element may be defined on a reference element.
All the geometrical quantities of the mesh and the ap-
proximation space are based upon this object.

Let us denote K̂ the unit simplex:

K̂ =

{
x ∈ Rd , (∀i, xi ≥ 0), ∑

i

xi ≤ 1

}
.

Proposition 5.21 (Affine mapping TK) Any simplex
K = conv(a0, ...,ad) of the mesh is the image of K̂ by an
affine mapping TK : K̂ → K of the form

TK(x̂) = a0 +BK x̂

where the ith column of BK is defined as the coordinates
of ai − a0 in the canonical basis of Rd. We have the
following properties:

|det(BK)|= d! |K|,

‖BK‖2 ≤
hK

ρK̂

,

‖B−1
K ‖2 ≤

hK̂

ρK

.

Here hK and hK̂ denote the diameters of K and K̂ respec-
tively whereas ρK and ρK̂ denote the diameters of the
incircles of K and K̂ respectively.

Proof of Proposition 5.21. Let us prove the estimates
on BK . Using a change of variables,

|K|=
∫

K
1dx =

∫

K̂
1 |det(BK)| dx̂ = |det(BK)|

∣∣K̂
∣∣ ,

where the volume of the reference simplex is given by∣∣K̂
∣∣= 1/d!. By definition of ‖ · ‖2 we have

‖BK‖2 = sup
‖x̂‖=ρK̂

‖BK · x̂‖
ρK̂

.

This supremum is attained (by a finite dimension argu-
ment): thus there exists â, b̂ ∈ K̂ such that ‖â− b̂‖= ρK̂

and

‖BK(â− b̂)‖= ‖TK(â)−TK(b̂)‖ ≤ hK ,

hence the result. The last inequality is obtained by ex-
changing the roles of K and K̂. �

Theorem 5.22 Let v : K → R. Then v ∈ Hm(K) if, and
only if, v̂ = v◦TK ∈ Hm(K̂). Moreover for any 0 ≤ k ≤ m

we have

|v|Hk(K) ≤C
|K| 1

2

ρk
K

|v̂|Hk(K̂) ,

|v̂|Hk(K̂) ≤C
hk

K

|K| 1
2

|v|Hk(K) .

Remark 5.23 Let us recall that for k = 0, H0 = L2 and
|·|H0 = ‖ · ‖L2.

Proof of Theorem 5.22. Let us prove the theorem for
m = 1 (the general case readily adapts).

Case k = 0. By using the change of variables

‖v‖2
L2(K)

=
∫

K
|v(x)|2 dx

=
∫

K̂
|v̂(x̂)|2 |det(BK)| dx̂

= |K|‖v̂‖2
L2(K̂)

.

Case k = 1. We have

∇̂v̂ = Bt
K(∇v)◦TK = Bt

K∇̂v,

hence

‖∇̂v‖2
L2(K̂)

≤ h2
K

ρ2
K̂

‖∇̂v‖2
L2(K̂)

=
h2

K

ρ2
K̂
|K| ‖∇v‖2

L2(K).

The other inequality is obtained by exchanging the roles
of K and K̂. �

Proposition 5.24 (Local simplicial Lagrange f.e.)
We consider Σ ⊂ K̂ the set of points defined as

(
I1

k
, ...,

Id

k

)
, ∀(I1, ..., Id) ∈Nd , I1 + ...+ Id ≤ k.

Then |Σ|=Ck
k+d = (k+d)!

d! k!
.

We denote (â j)1≤ j≤|Σ| the elements of this set. Then

the mapping p ∈ Pk 7→ (p(â j))1≤ j≤|Σ| ∈ R|Σ| is an isomor-

phism (in particular Pk and Σ have the same cardinality).

the triplet (K̂,Pk,Σ) is the so-called Pk simplicial
Lagrange finite element.
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the set (â j) j is the set of nodes of this finite element
and the linear form v ∈ C0(K̂) 7→ v(â j) is denoted
the degree of freedom associated to â j.

For all 1 ≤ i ≤ |Σ| there exists a unique function
θi ∈ Pk such that

θi(â j) = δi j, ∀1 ≤ j ≤ |Σ| .

These functions are the so-called local shape func-
tions.

Example. In 1D, the nodes of the Pk finite elements are
described in Figure 8:

P0 finite element: the node is the center of mass
of K̂ (this element will be discussed later).

P1 finite element: the nodes are the vertices of K̂.
Figure 7 a) presents the degrees of freedom along
with the local shape functions in this case.

P2 finite element: the nodes are the vertices and
the center of K̂. Figure 7 b) presents the degrees
of freedom along with the local shape functions in
this case.

�

Example. In 2D, the nodes of the Pk finite elements are
described in Figure 8:

P0 finite element: the node is the center of mass
of K̂ (this element will be discussed later).

P1 finite element: the nodes are the vertices of K̂.

P2 finite element: the nodes are the vertices and
the center of the edges of K̂.

P3 finite element: the nodes are the vertices, the
center of mass and the points located at 1/3 and
2/3 in each edge of K̂.

�

Example. In 3D, the nodes of the Pk finite elements are
described in Figure 9:

P1 finite element: the nodes are the vertices of K̂.

P2 finite element: the nodes are the vertices and
the center of the edges of K̂.

�

Definition 5.25 (Simplicial conforming mesh) Let
T be a mesh made of simplicial elements K. We say that
T is geometrically conforming if, and only if, for any
distinct elements K and L, E = K̄∩ L̄ satisifes one of the
following properties:

either dim(F)≤ d−2 (note that F may be empty);

or F is face for K and a face for L.

Proposition 5.26 (Global simplicial Lagrange f.e.)
Let T be a simplicial conforming mesh of Ω.

The set of discretization nodes is denoted Σh =
∪KΣK = ∪KTK(Σ).

We call Pk approximation space on the mesh T
the space

Vh := {v ∈C0(Ω̄), ∀K ∈ T , v|K ∈ Pk}.

For any a∈ Σh there exists a unique function in Vh,
denoted φa, such that

φa(a) = 1, φa(b) = 0, ∀b ∈ Σh \ {a}.

These functions are the so-called global shape func-
tions of the approximation space. They form a ba-
sis for Vh.

For any a ∈ Σh the mapping v ∈C0(Ω̄) 7→ v(a) is a
continuous linear form which is called a degree of
freedom associated to node a.

The space Vh satisfies

Vh = {v ∈ H1(Ω), ∀K ∈ T , v|K ∈ Pk}.

Moreover the link between the local and global shape
functions is given by:

Proposition-Definition 5.27 (Shape functions) Let
a ∈ Let a ∈ Σh and let K ∈ T such that a ∈ K.

There exists a unique J(a,K)∈ {1, ..., |Σ|} such that
a = TK(âJ(a,K)) (we say that J(a,K) is the local in-
dex of node a in the element K).

We have

(φa)|K ◦TK = θJ(a,K),

Remark 5.28 The function θJ(a,K) is the local shape

function associated to the node J(a,K) in K̂.

Local interpolation operator. Global interpola-
tion operator.
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â1 â2

P1 element

θ1

θ2

1

1
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Figure 7. Local shape functions for the P1 and P2 elements in 1D
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Figure 8. Nodes of the Pk finite elements in 2D
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Figure 9. Nodes of the Pk finite elements in 3D

Definition 5.29 (Local interpolation operator) We
define the local interpolation operator

I k
0 : C0(K̂) → Pk

v̂ 7→ I k
0 v̂

with

I k
0 v̂(x̂) =

|Σ|
∑
i=1

v̂(âi)θi(x̂).

I k
0 v̂ is the unique polynomial in Pk which coincides with

v̂ on the nodes of the reference element.

Definition 5.30 (Global interpolation operator) We
define the global interpolation operator

I k
h : C0(Ω̄) → Vh

v 7→ I k
h v

with
I k

h v(x) = ∑
a∈Σh

v(a)φa(x).

I k
h v is the unique function in Vh which coincides with v

on the nodes of the discretization.

The operators are linked by the following formula:

Lemma 5.31

For any K ∈ T ,

(I k
h v)|K ◦TK = I k

0 (v◦TK).

If v ∈ C0(Ω̄), v = 0 on ∂Ω, then I 1
h v = 0 on ∂Ω.

In particular I 1
h is an interpolation operator that

maps H1
0 (Ω)∩C0(Ω̄) into Vh,0 =Vh ∩H1

0 (Ω).

Proof of Lemma 5.31.

Notice that (I k
h v)|K ◦ TK and I k

0 (v ◦ TK) are two

elements of Pk which coincide on the nodes of the
reference element. By uniqueness of the Lagrange
interpolation polynomial, the property is proved.

The restriction of I k
h v to a face F of the mesh only

depends on the degrees of freedom associated to
the nodes of face F . If the values of these degrees
of freedom are zero, then (I k

h v)|F ≡ 0. Thus the
proof is concluded by taking F ⊂ ∂Ω.

�

The interpolation operators have a major drawback:
they apply to continuous functions only. But functions
in H1(Ω) are not necessarily continuous in dimension d ≥
2. Nevertheless for d = 2 or d = 3, H2(Ω) is embedded in
the space of continuous functions so that these operators
may be used.

Analysis of the interpolation error. Let us start
with two general tools.

Lemma 5.32 (Deny-Lions) Let U a bounded Lipschitz
domain of Rd and k ∈ N. We denote Pk the set of poly-
nomials of degree k on U . There exists a constant C > 0

such that

∀u ∈ Hk+1(Ω), inf
π∈Pk

‖u−π‖Hk+1(U) ≤C |u|Hk+1(U) .

Proof of Lemma 5.32. For any multi-index α ∈ Nd

such that |α| ≤ k, we denote fα the linear form defined
on Hk+1(U) as

fα(v) =

∫

U
∂ α v.

The dimension of the set of such multi-indices is exactly
the dimension of Pk.

We first prove that the linear mapping

F : π ∈ Pk 7→ ( fα (π))|α |≤k ∈Rdim(Pk) (30)

is bijective. Using the dimension argument, we
just have to prove that it is injective. Assume
that a non-zero polynomial π ∈ Pk is such that
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( fα (π))|α |≤k = 0. We can find a non-zero mono-
mial with maximal index in π . But then ∂ α π is a
non-zero constant and

∫
U ∂ α π cannot be zero...

Let us prove that there exists C > 0 such that, for
all u ∈ Hk+1(Ω),

‖u‖Hk+1(U) ≤C

(
|u|Hk+1(U)+ ∑

|α |≤k

| fα (u)|
)
. (31)

Assume that the property is false. Then there ex-
ists a sequence {un} of elements in Hk+1(U) such
that

‖un‖Hk+1(U) = 1, (32)

|un|Hk+1(U)+ ∑
|α |≤k

| fα(un)| ≤
1

n
. (33)

By Eq. (32) we can extract a sequence (uφ(n))n

which weakly converges in Hk+1(U) to a function
u. Moreover by compactness, (uφ(n))n strongly con-

verges to u in Hk(U) (see the Rellich-Kondrachov
theorem). By Eq. (33) all the derivatives of order
k+1 of (uφ(n))n tend to 0. This proves that the par-
tial derivatives of u of order k+1 are zero, so that
u ∈ Pk. Moreover passing to the limit in fα(uφ(n)),
we get: fα(u) = 0 for all |α| ≤ k. From the first
item, we deduce that u = 0.

Since Eq. (32) leads to ‖uφ(n)‖Hk(U) → 1, by strong

convergence we have ‖u‖Hk(U) = 1 which contra-
dicts the property u = 0.

Let u ∈ Hk+1(U). As the map F defined in (30) is
surjective there exists π̃ ∈ Pk such that

∀|α| ≤ k, fα(u− π̃) = 0.

Then we obtain

inf
π∈Pk

‖u−π‖Hk+1(U)

≤ ‖u− π̃‖Hk+1(U)

≤C


|u− π̃|Hk+1(U)+ ∑

|α |≤k

| fα(u− π̃)|︸ ︷︷ ︸
=0




=C |u− π̃|Hk+1(U) =C |u|Hk+1(U) .

�

Lemma 5.33 (Bramble-Hilbert) Let U be a bounded
Lipschitz domain of Rd, k ∈N and Φ a continuous linear
operator from Hk+1(U) onto some normed vector space
E. If Φ ≡ 0 on Pk then there exists C > 0 such that

∀u ∈ Hk+1(U), ‖Φu‖E ≤C |u|Hk+1(U) .

Proof of Lemma 5.33. For all u ∈ Hk+1(U) and for all
π ∈ Pk, we have

‖Φu‖E = ‖Φ(u−π)‖E ≤ ‖Φ‖‖u−π‖Hk+1(U).

Taking the infimum over π and using the Deny-Lions
Lemma (see Lemma 5.32) we get

‖Φu‖E ≤C |u|Hk+1(U) .

�

Definition 5.34 (Regular mesh)

Let T be a mesh of Ω. We define

σK =
hK

ρK
, σT = sup

K∈T

hK

ρK
.

A family of meshes (Th)h of Ω is regular if there
exists a constant C > 0 such that

∀h > 0, σTh
≤C.

Remark 5.35 The regularity property is equivalent to
the following constraints:

The volume of each cell is of order hd
K:

∃C > 0, ∀h > 0, ∀K ∈ Th, |K| ≥Chd
K .

The diameter of the incircle is uniformly bounded
from below by hK:

∃C > 0, ∀h > 0, ∀K ∈ Th, ρK ≥ChK .

We deduce from the last two lemmas the following
interpolation theorem:

Theorem 5.36 (Interpolation operator) Let Ω be a
bounded Lipschitz domain of Rd, k ∈ N. Let 0 ≤ m ≤ k

and we assume that m + 1 > d/2 so that Hm+1(Ω) ⊂
C0(Ω̄).

Local interpolation estimate. For l ≤ m+ 1, there
exists C > 0 such that, for all K ∈T , ∀v∈Hm+1(K),

∣∣∣v−I k
h v

∣∣∣
Hl(K)

≤Cσ l
Khm+1−l

K |v|Hm+1(K) . (34)

Global interpolation estimate. For l ∈ {0,1}, there
exists C > 0 such that, for all v ∈ Hm+1(Ω),

∣∣∣v−I k
h v

∣∣∣
Hl (Ω)

≤Cσ l
T hm+1−l |v|Hm+1(Ω) . (35)

Let us recall that for k = 0, H0 = L2 and |·|H0 = ‖ · ‖L2 .
Proof of Theorem 5.36.
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The global estimate, see Eq. (35), is deduced from
local estimates (34) combined with Proposition 5.20,
see page 36. The restriction l ∈ {0,1} is essential
here because functions in Vh are not in H l(Ω) for
l ≥ 2. But the local estimate holds for l ≤ m+ 1.

Let us prove the local estimate for l ≤m+1. By the
Bramble-Hilbert lemma, as the local interpolation
operator I k

0 is the identity on Pk, then

Φ : v̂ ∈ Hm+1(K̂) 7→ v̂−I k
0 v̂ ∈ H l(K̂)

is zero on Pk. Moreover Φ is a continuous linear op-
erator (because the embedding Hm+1(K̂) ⊂ C0(K̂)
is continuous). By the Bramble-Hilbert lemma,
there exists C > 0 such that

∀v̂ ∈ Hm+1(K̂), ‖v̂−I k
0 v̂‖Hl(K̂) ≤C |v̂|Hm+1(K̂) .

Now we use Theorem 5.22, see page 38. Let v ∈
Hm+1(K). We define v̂ = v◦TK and we get

∣∣v−I k
h v
∣∣
Hl (K)

≤ C
|K|

1
2

ρ l
K

∣∣∣v◦TK −I k
h v◦TK

∣∣∣
Hl(K̂)

≤ C
|K|

1
2

ρ l
K

∣∣∣v̂−I k
0 v

∣∣∣
Hl (K̂)

≤ C′ |K|
1
2

ρ l
K

|v̂|Hm+1(K̂)

≤ C′′ h
m+1
K

ρ l
K

|v|Hm+1(K)

≤ C′′σ l
K hm+1−l

K |v|Hm+1(K) .

�

The definition of a regular mesh ensures that the
global interpolation estimate leads to an optimal approx-
imation error estimate, see Eq. (35), i.e. as it is expected
for the approximation space Vh built upon a regular tri-
angulation. Thus we get the following error estimate.

Theorem 5.37 (Pk error estimate) Let a(·, ·) be a bi-
linear form on H1

0 (Ω) which is continuous and coercive;
L a continuous linear form on H1

0 (Ω). Let (Th)h be a reg-
ular family of simplicial meshes of Ω. Let Vh be the Pk

Lagrange approximation space built upon these meshes
and Vh,0 = Vh ∩H1

0 (Ω). We assume that the unique u ∈
H1

0 (Ω) satisfying

a(u,v) = L(v), ∀v ∈ H1
0 (Ω)

belongs to Hm+1(Ω) for some m ≤ k. Denote uh the solu-
tion of the approximate problem built upon Vh,0. There
exists C > 0 which only depends on Ω, a(·, ·), suph(σTh

)
such that

‖u− uh‖H1 ≤Chm |u|Hm+1(Ω) .

If furthermore the adjoint problem admits an elliptic reg-
ularity property, then

‖u− uh‖L2 ≤Chm+1 |u|Hm+1(Ω) .

Proof of Theorem 5.37. In the case m + 1 ≥ d/2,
the theorem is a consequence of the properties of the
Lagrange interpolation operator, see Theorem 5.36 with
l = 1. Note that the norms |·|H1(Ω) and ‖ · ‖H1(Ω) are

equivalent since u− uh ∈ H1
0 (Ω).

In the case m+1 < d/2 it is necessary to build other
interpolation operators which overcome the difficulties
related to the continuity argument. Among operators
that have stability and interpolation properties, let us
mention the Clément operator [7] (which fails at preserv-
ing the Dirichlet boundary conditions) and the Scott-
Zhang interpolation operator [16] (which preserves ho-
mogeneous boundary conditions). The construction is
more intricate and is not given here and we refer the
reader to [9] for an overview on this issue. �

5.4 Other classical finite elements

The Qk Lagrange finite element. Considering a
mesh of Ω which is made of quadrilaterals in 2D, par-
allelepipeds in 3D. What kind of finite elements is it
possible to build?

We cannot hope for a degree of freedom on each ver-
tex of the mesh with piecewise P1 functions. Thus it
is necessary to enlarge the space of polynomials that
should be considered:

Qk(Rd) =



u = ∑

α∈Nd , supαi≤k

aαx
α1
1 ...x

αd

d





= Pk(R)⊗ ...⊗Pk(R),

which are the polynomials with all partial degrees less
than k. Note that, in 1D, Qk = Pk for any k.

The Q1 element is defined by 4 coefficients in 2D, 8
coefficients in 3D. This corresponds to the number of
vertices for a quadrilateral in 2D, parallelepiped in 3D.
More precisely,

Q1(R2) = span(1,x1,x2,x1x2),

Q1(R3) = span(1,x1,x2,x3,x1x2,x1x3,x2x3,x1x2x3).

We consider the reference element K̂ = [0,1]d as the unit
cube in Rd .

Remark 5.38 Notice that the restriction of a function
in Qk to an hyperplane parallel to the axes is a function
in Pk.

Proposition 5.39 (Qk Lagrange finite element) We
consider Σ ⊂ K̂ the set of points defined as
(

I1

k
, ...,

Id

k

)
, ∀(I1, ..., Id) ∈ Nd , ∀ j ∈ {1, ...,d}, I j ≤ k.
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Then |Σ|= (k+ 1)d.
We denote (â j)1≤ j≤|Σ| the elements of this set. Then

the mapping p ∈Qk 7→ (p(â j))1≤ j≤|Σ| ∈R|Σ| is an isomor-

phism (in particular Qk and Σ have the same cardinal-
ity).

the triplet (K̂,Qk,Σ) is the so-called Qk Lagrange
finite element.

the set (â j) j is the set of nodes of this finite element
and the linear form v ∈ C0(K̂) 7→ v(â j) is denoted
the degree of freedom associated to â j.

For all 1 ≤ i ≤ |Σ| there exists a unique function
θi ∈Qk such that

θi(â j) = δi j, ∀1 ≤ j ≤ |Σ| .

These functions are the so-called local shape func-
tions.

Example. In 2D or 3D, the nodes of the Q1 finite ele-
ments are described in Figure 10.

�

The notion of regularity of the mesh is slightly mod-
ified: in particular for a quadrilateral, the diameter of
the incircle for a triangle is replaced by

ρK = min(ρT1
,ρT2

,ρT3
,ρT4

)

where Ti denote the four triangles obtained from the four
vertices of the quadrilateral.

Let us consider a mapping TK : K̂ → K such that

TK(â j) = a j, ∀ j ∈ {1, ... |Σ|}.

The mapping TK cannot be affine, except if K is a paral-
lelogram. In the general case, the mapping is quadratic:
TK ∈ (Q1)d . In particular the Jacobian matrix is not
constant anymore.

Thus the approximation space is defined as

Vh = {v ∈C0(Ω̄), ∀K ∈ T , v◦TK ∈Qk},

which is not equivalent to the condition “v|K ∈Qk, for all
K”, except if the cells are parallelograms (in which case
TK is affine). The interpolation operator is defined as
previously. Moreover under regularity assumptions on
the mesh we obtain the following interpolation result:

Proposition 5.40 For a family of regular quadrilateral
meshes, there exists a constant C > 0 such that, for all
0 ≤ m ≤ k and for all 0 ≤ p ≤ m,

∀v ∈ Hm+1(Ω), ‖v−I k
h v‖H p(Ω) ≤Cσ hm−p+1 |v|Hm+1(Ω) .

A conforming L2 element: the discontinuous ele-
ment P0 =Q0. We note P0 =Q0 the set of constant func-
tions. Then, from a quadrilateral or simplicial mesh, we
can easily build the set of piecewise constant functions:

Vh = {u ∈ L2(Ω), u|Ki
∈ P0}.

This space is conforming in L2(Ω) (but not in H1(Ω)).
In the case of regular functions, the degree of free-

dom in a cell is the value of the function at the center of
mass of the cell. It is possible to define the Lagrange in-
terpolation operator I 0

h as done previously10 and then
get suitable estimates. However, for this particular ap-
proximation space, there exists an interpolation operator
which is much simpler and which applies to any function
in L2(Ω).

Definition 5.41 For any function v ∈ V , we define a
piecewise constant function J 0

h v whose value on each

cell K is |K|−1 ∫
K v:

J 0
h : V → Vh

v 7→ J 0
h v := ∑

K∈Σ

∫
K v

|K| 1K .

Proposition 5.42 The operator J 0
h is the L2-orthogonal

projection on Vh. Moreover (without regularity assump-
tion on the mesh, provided that the cells are convex), for
all 0 ≤ m ≤ 1, there exists C > 1 such that

∀v ∈ Hm(Ω), ‖v−J 0
h v‖L2(Ω) ≤Chm |v|Hm(Ω) .

This finite element is often used in the discretization
of the pressure in the Stokes problem.

6. Finite elements for saddle-point
problems

In the previous section, finite element spaces were
considered for coercive problems. However when consid-
ering non-coercive problems such as saddle-point prob-
lems, it is necessary to ensure the compatibility of the
approximation spaces Xh and Mh, in the sense that a
uniform inf-sup inequality has to be satisfied.

As already pointed out, in the finite dimensional
framework, positivity of the inf-sup constant is equiva-
lent to the injectivity of the operator B′

h : Mh →X ′
h (which,

10For instance, in 1D, the space Vh writes

Vh = {u ∈ L2(Ω), u|Ki
∈ P0},

and the mapping

Φ : u 7→ (u(x 1
2
),u(x 3

2
), ...,u(x

N+ 1
2
)))

is an isomorphism from Vh onto RN+1. In particular dim(Vh) =N+1.
Then the interpolation operator I 0

h from V onto Vh is defined as

∀u ∈V, ∀x ∈ Ω, I 0
h u(x) =

N

∑
i=0

u(x
i+ 1

2
)φ

i+ 1
2
(x).
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â1 â2

â3 â4

â1

â2

â3

â4

â5

â6

â7

â8

Figure 10. Nodes of the Q1 finite elements: in 2D and 3D.

in the case of the Stokes problem, is nothing but the dis-
crete pressure gradient), and thus to the well-posedness
of the discrete problem. In that case, we can define

βh = inf
qh∈Mh

(
sup

vh∈Xh

b(vh,qh)

‖vh‖X‖qh‖M

)
> 0.

Thus we need to be able to prove that B′
h is injective

on the one hand and that βh does not go to 0 as h goes
to 0 on the other hand. This last property is called the
inf-sup stability of the numerical method.

6.1 Fortin’s lemma
We often consider conforming approximation spaces

for X and M which satisfy the inf-sup condition. In that
case the validity of a uniform discrete inf-sup condition
is given by the following result:

Lemma 6.1 (Fortin) Let b : X ×M → R be a continu-
ous bilinear form and Xh ⊂ X , Mh ⊂ M two finite dimen-
sional subspaces. We assume that b satisfies the inf-sup
condition on X ×M:

∃β > 0, inf
q∈M

(
sup
v∈X

b(v,q)

‖v‖X‖q‖M

)
≥ β .

Then b satisfies a uniform inf-sup condition on Xh ×Mh

if, and only if, there exists a continuous linear operator
Πh : X → Xh and a C > 0, independent of h, such that

∀v ∈ X , ‖Πhv‖X ≤C‖v‖X

and
∀qh ∈ Mh, b(v,qh) = b(Πhv,qh).

In the literature, the operator Πh is usually called the
Fortin operator.

Proof of Lemma 6.1. Let us proceed in two steps.

Assume that there exists such a continuous linear
operator Πh : X → Xh. Then, for all qh ∈ Mh, we
have

β‖qh‖M ≤ sup
v∈X

b(v,qh)

‖v‖X

= sup
v∈X

b(Πhv,qh)

‖v‖X

≤ C sup
v∈X

b(Πhv,qh)

‖Πhv‖X

≤ C sup
vh∈Xh

b(vh,qh)

‖vh‖X

,

which states the uniform inf-sup condition for b on

Xh ×Mh with a constant β
C
.

Assume that the uniform inf-sup condition is satis-
fied with a constant β̄ . Then there exists a unique
(uh,qh) ∈ Xh ×Mh such that
{

(uh,vh)+ b(vh, ph) = 0, ∀vh ∈ Xh,
b(uh,qh) = G(qh), ∀qh ∈ Mh,

and (uh,qh) continuously depends on G with the
estimate (see Theorem 3.13)

‖uh‖X ≤ 2

β̄
‖G‖M′ .

Let v ∈ X . We choose the linear form G as

∀q ∈ M, G(q) = b(v,q),

whose norm is bounded by ‖b‖‖v‖X . Then we find
an element uh ∈ Xh which linearly depends on v,
such that

‖uh‖X ≤ 2‖b‖
β̄

‖v‖X ,

and
b(uh,qh) = b(v,qh), ∀qh ∈ Mh.

Thus the operator Πh : v 7→ uh satisfies the desired
properties.
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�

6.2 Stokes problem
For the sake of simplicity, we consider only here the

2D case. We review the most classical conforming finite
element for the Stokes problem.

We shall consider the unit square Ω=]0,1[2 equipped
with either a uniform rectangular mesh or a uniform
triangular (simplicial) mesh obtained by dividing all the
rectangles into two isometric parts.

The geometry of all the finite elements that we pro-
pose to analyse here is summarized in Figure 11.

6.2.1 The P1 −P0 element

Consider now the uniform triangle mesh of Ω. We
consider the following approximation spaces

Xh = {v ∈ (H1
0 (Ω))2, ∀K ∈ T , v◦TK ∈ (P1)

2},

Mh = {v ∈ L2
0(Ω), ∀K ∈ T , v◦TK ∈ P0}.

Observe that the degrees of freedom for the velocity field
are exactly the same as for theQ1 element. However, the
approximation space Xh is not the same as before, since
the fields in Xh are linear on each triangle whereas the
in the previous section the fields in Xh were bilinear on
each rectangle.

We also observe that, for a same number of vertices
in the mesh, the number of degrees of freedom for the
pressure is twice the one of the previous section.

Proposition 6.2 (P1 −P0 is unstable) The P1−P0 fi-
nite elements are not inf-sup stable for the Stokes prob-
lem.

Proof of Proposition 6.2. Let us remark that

there are 2NM elements and thus d(p) = 2NM− 1;

there are (N+1)(M+1) nodes, including (N−1)(M−
1) interior nodes, hence d(v) = 2(N − 1)(M− 1).

Then

d(p)− d(v) = (2NM− 1)− (2(N− 1)(M− 1))
= 2(N +M)− 3

> 0

As d(p) > d(v) the kernel of B′
h is not reduced to 0. In

fact, it means that the kernel of B′
h is very large! This

choice of approximation spaces is thus far from being
inf-sup stable.

We may prove that the kernel of Bh (which contains
the functions with discrete free divergence) is {0}, i.e.
the only velocity field vh ∈ Xh which is likely to be a
solution of the system is the null function.

By definition, vh ∈ Ker(Bh) if

∫

Ω
div(vh)qh = 0, ∀qh ∈ Mh. (36)

Since vh is 0 at the boundary, we have by the Stokes
formula (see Proposition 1.26, page 6),

∫

Ω
div(vh) q̄ = 0, ∀q̄ ∈ R.

Thus Eq. (36) also holds for piecewise constant test func-
tions with non-zero mean values. In practice we thus
have a condition which writes

∫

K
div(vh) = 0, ∀K ∈ T .

Since vh ∈ (P1)2 on each cell K, vh takes the form vh(x,y)=(
aK

1 + bK
1 x+ cK

1 y,aK
2 + bK

2 x+ cK
2 y
)
on K, hence div(vh) =

bK
1 + cK

2 is a constant. As a consequence vh ∈ Ker(Bh)
if, and only if, div(vh) = 0 in a distribution sense (this
property does not hold for any discretization of the pres-
sure!).

Let us now investigate the consequences on vh. Let
K be a triangle with nodes that are numbered 1, 2 and
3, and let v ∈ (P1)2 on K, see Figure 12. By the Stokes
formula, the divergence free condition on K writes

∑
σ

∫

σ
(v ·n) = 0.

As v is affine, the integral along the edge is equal to the
value of the function at the middle of the edge (weighted
by the length of the edge), which is equal to the half-sum
of the degrees of freedom of the corresponding nodes.
Denoting mi and ni the measure and the outward normal
unit vector of the edge at the opposite of node i, it yields

m3
v1 + v2

2
·n3 +m2

v1 + v3

2
·n2 +m1

v2 + v3

2
·n1 = 0

that is to say

v1 · (m2n2 +m3n3)+ v2 · (m1n1 +m3n3)

+ v3 · (m1n1 +m2n2) = 0.

Applying the Stokes formula to constant vector fields
in the triangle, we find that the following equality is
satisfied

m1n1 +m2n2 +m3n3 = 0,

which leads us back to the free divergence equation which
becomes

m1v1 ·n1 +m2v2 ·n2 +m3v3 ·n3 = 0.

It means in particular that if v1 = v2 = 0 then v3 and n3

are orthogonal. Thus if K is a triangle with an edge at
the boundary, then only one degree of freedom is at the
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Q1 −P0 P1 −P0

P1 −P1 P1
b −P1

P2 −P1

Figure 11. Comparison of various elements for the Stokes problem on a square domain. Degrees of freedom for
velocity ( ) and pressure ( )
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v1

v2

v3

m3

m1m2

n3

n1
n2

Figure 12. Notations in a triangle element. Three
degrees of freedom for the velocity field.

interior of the domain: the orientation of the velocity
field at this node is parallel to the boundary; if the same
degree of freedom is the interior node of another trian-
gle with an edge at the boundary, we obtain another
orthogonality condition which proves that the velocity
is zero.

This reasoning applies to structured triangular meshes
and proves the so-called locking effect. �

6.2.2 The Q1 −P0 element

Here we consider the uniform cartesian mesh. The
cells are thus denoted by Ki j with i ∈ {1, ...,N} and j ∈
{1, ...,M}.

To simplify some computations, we assume that N

and M are even and we set N = 2n, M = 2m. The mesh
size in the x direction is denoted by h = 1/N and the one
in the y direction is denoted by k = 1/M. We introduce
the functional spaces

Xh = {v ∈ (H1
0 (Ω))2, ∀K ∈ T , v◦TK ∈ (Q1)2},

Mh = {v ∈ L2
0(Ω), ∀K ∈ T , v|K ∈ P0},

The set of degrees of freedom for such discretization
spaces is represented in Figure 11.

This element is the most simple that one can think
of on a Cartesian grid. However, we will show that the
discrete inf-sup condition is not satisfied by this finite
element.

Proposition 6.3 (Q1 −P0 is unstable) The Q1−P0 fi-
nite elements are not inf-sup stable for the Stokes prob-
lem.

Remark 6.4 As it was already pointed out, we consider
the restriction B′

h of operator B : M → X ′ as an operator
from Mh onto X ′

h. Then the inf-sup condition states that
this operator should be injective. In particular, the di-
mension of Mh should be lower than the dimension of
Xh. Thus, the inf-sup condition is not satisfied if Mh is
too big with respect to Xh.

Let us denote d(p) (resp. d(v)) the number of degrees
of freedom for the pressure (resp. for the velocity). Let
us remark that

there are NM elements and thus d(p) = NM−1 (as
the mean value of the pressure is zero);

there are (N+1)(M+1) nodes, including (N−1)(M−
1) interior nodes (that are the only ones to be con-
sidered as velocity degrees of freedom because of the
homogeneous Dirichlet conditions). Hence, since
the velocity is a two-dimensional vector field, we
have d(v) = 2(N − 1)(M− 1) in 2D.

Then by the rank theorem, the dimension of the ker-
nel of B′

h is at least

d(p)− d(v) = (NM − 1)− (2(N− 1)(M− 1))
= −NM+ 2(N+M)

which is negative (except for coarse meshes). Thus d(p)<
d(v) and considerations on the size of the approximation
spaces are not sufficient to conclude: the kernel of B′

h has
to be investigated in details in order to show that the inf-
sup condition is not satisfied.

Proof of Proposition 6.3. We recall that the operator
B′

h is defined by

B′
h : Mh → X ′

h

ph 7→ B′
h ph = b(·, ph)

i.e.11

∀vh ∈ Xh,
〈
B′

h ph,vh

〉
X ′

h
,Xh

=

∫

Ω
div(vh) ph

and we aim at proving that B′
h is not injective. More

precisely, we shall prove that

dim(Ker(B′
h)) = 1.

The velocity field v is described by its two components
v := (v(1),v(2)). We denote pi j the discrete pressure in

each element and v
( j)

i− 1
2 j− 1

2

, for j ∈ {1,2}, the components

of the discrete velocity at node (i− 1
2 , j − 1

2). We can
compute

∫

Ω
div(vh) ph =

N

∑
i=1

M

∑
j=1

pi j

(∫

Ki j

div(vh)

)
.

Each cell has four vertices that we locally number coun-
terclockwise starting from the lower left corner (from 1
to 4). The edges are also numbered:

∂K
(1)
i j denotes the edge 1 → 2,

11By definition, we have, for all vh ∈ Xh,
〈
B′

h ph,vh

〉
X ′

h
,Xh

= 〈B′ph,vh〉X ′ ,X

= 〈Bvh, ph〉M′ ,M
= b(vh, ph)
=

∫
Ω div(vh) ph.
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∂K
(2)
i j denotes the edge 2 → 3,

∂K
(3)
i j denotes the edge 3 → 4,

∂K
(4)
i j denotes the edge 4 → 1.

We have

∫

Ki j

div(vh) =

∫

∂Ki j

vh ·n =
4

∑
ℓ=1

∫

∂K
(ℓ)
i j

vh ·n.

Let us compute the first term:

∫

∂K
(1)
i j

vh ·n =

∫ x
i+ 1

2

x
i− 1

2


 v

(1)
h

(
x,y

j− 1
2

)

v
(2)
h

(
x,y

j− 1
2

)

 ·
(

0

−1

)
dx

= −
∫ x

i+ 1
2

x
i− 1

2

v
(2)
h (x,y

j− 1
2
)dx.

The function vh(·,y j− 1
2
) is linear on ∂K

(1)
i j (see Remark

5.38) so that the (exact) trapezoidal rule yields

∫

∂K
(1)
i j

vh ·n =−h

2

(
v
(2)

i− 1
2 j− 1

2

+ v
(2)

i+ 1
2 j− 1

2

)
.

In the same way the other terms can be computed as
well:

∫

∂K
(2)
i j

vh ·n =+
k

2

(
v
(1)

i+ 1
2 j− 1

2

+ v
(1)

i+ 1
2 j+ 1

2

)
,

∫

∂K
(3)
i j

vh ·n =+
h

2

(
v
(2)

i− 1
2 j+ 1

2

+ v
(2)

i+ 1
2 j+ 1

2

)
,

∫

∂K
(4)
i j

vh ·n =− k

2

(
v
(1)

i− 1
2 j− 1

2

+ v
(1)

i− 1
2 j+ 1

2

)
,

We finally obtain:
∫

Ki j

div(vh)

=
hk

2





v
(2)

i− 1
2 j+ 1

2

− v
(2)

i− 1
2 j− 1

2

k
+

v
(2)

i+ 1
2 j+ 1

2

− v
(2)

i+ 1
2 j− 1

2

k

+
v
(1)

i+ 1
2 j+ 1

2

− v
(1)

i− 1
2 j+ 1

2

h
+

v
(1)

i+ 1
2 j− 1

2

− v
(1)

i− 1
2 j− 1

2

h





As vh = 0 on the boundary, by a discrete integration by
parts, we have

b(vh, ph) = −∑
i, j

hkv
i− 1

2 j+ 1
2
(δy p)

i− 1
2 j− 1

2

−∑
i, j

hku
i− 1

2 j− 1
2
(δx p)

i− 1
2 j− 1

2

with

(δx p)
i− 1

2 j− 1
2
=

1

2

(
pi j − pi−1 j

h
+

pi j−1 − pi−1 j−1

h

)
,

(δy p)
i− 1

2 j− 1
2
=

1

2

(
pi j − pi j−1

k
+

pi−1 j − pi−1 j−1

k

)
.

Thus, b(vh, ph) = 0 for all vh ∈ Xh if, and only if, δx p =
δy p = 0, i.e.

pi j = pi−1 j−1, ∀i, j

pi−1 j = pi j−1, ∀i, j.

As ph ∈ Mh, the mean value of ph is zero, hence

pi j =−pi−1 j,∀i, j.

We thus obtain a spurious mode which is highly oscillat-
ing. This so-called checkerboard mode exactly generates
the kernel of B′

h = span(ψh) with

ψh = ∑
i

∑
j

1Kik
(−1)i+ j.

�

One may hope to recover the stability by replacing
Mh by the space M̃h obtained from Mh by “removing”
span(ψh), but we will see that it is not the case. More
precisely, if we define M̃h as the orthogonal complement
of span(ψh) in Mh, then we can prove that Xh and M̃h

satisfy the discrete inf-sup condition but unfortunately
not in a uniform way with respect to h.

Proposition 6.5 Define

M̃h := ψ⊥
h = {ph ∈ Mh, (ph,ψh)L2 = 0},

where ψh denotes the spurious mode of the Q1−P0 finite
element. For all h > 0, we have

βh := inf
ph∈M̃h

sup
vh∈Xh

b(vh, ph)

‖vh‖H1‖ph‖L2

> 0.

Moreover there exists C1 > 0 and C2 > 0 such that

C1h ≤ βh ≤C2h.

Proof of Proposition 6.5. The positivity of βh follows
from the construction of M̃h: the operator

B′
h : M̃h → X ′

h

ph 7→ B′
h ph = b(·, ph)

is injective by means of construction which, in the finite
dimensional framework, guarantees that βh > 0.

Let us prove the most interesting inequality. For this
we construct a function qh which satisfies suitable prop-
erties:

qh =
2n

∑
i=1

2m

∑
j=1

1Ki j
(−1)i+ j

(
E

(
i− 1

2

)
− n− 1

2

)
,
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where E denotes the floor function. By means of con-
struction the mean value of qh is zero. Moreover,

∫

Ω
qhψh = hk∑

i j

(
E

(
i− 1

2

)
− n− 1

2

)

= hkM
2n

∑
i=1

(
E

(
i− 1

2

)
− n− 1

2

)

= 2hkM
n−1

∑
p=0

(
p− n− 1

2

)

= 0.

As a consequence, qh ∈ M̃h.

Computation of ‖qh‖L2(Ω).

‖qh‖2
L2(Ω)

= hk ∑i, j

(
E
(

i−1
2

)
− n−1

2

)2

= 2hkM ∑n−1
p=0

(
p− n−1

2

)2

∼ Chn3

∼ Ch−2.

Thus ‖qh‖L2(Ω) is of order h−1 as h → 0.

Computation of b(vh,qh). Let us consider an ar-
bitrary vh ∈ Xh. Using the previous notations we
compute δxqh and δyqh. On the one hand, δxqh = 0.
On the other hand,

(δyqh)i− 1
2 j− 1

2
=

{
0, if i = 2p,

2
(−1) j+1

k
, if i = 2p+ 1.

Then we get

b(vh,qh) = 2
n−1

∑
p=0

2m

∑
j=1

h(−1) j+1v
2p+ 1

2 j− 1
2

= 2
n−1

∑
p=0

m

∑
r=1

h
(

v
2p+ 1

2 2r− 3
2
− v

2p+ 1
2 2r− 1

2

)
.

Hence, by the Cauchy-Schwarz inequality, we get

|b(vh,qh)|

≤ 2h
n−1

∑
p=0

∫ 1

0

∣∣∂yvh((2p+ 1)h,y)
∣∣ dy

≤ 2h



∫ 1

0

(
n−1

∑
p=0

∣∣∂yvh((2p+ 1)h,y)
∣∣
)2

dy




1
2

≤ 2h
√

n

(∫ 1

0

n−1

∑
p=0

∣∣∂yvh((2p+ 1)h,y)
∣∣2 dy

) 1
2

As vh ∈ Q1, x 7→ ∂yvh(x,y) is piecewise affine and
moreover it is continuous for a.e. y ∈ Ω (precisely
for all the y’s that do not belong to the boundary
of the cells). We can then use the following basic
inequality

a2 + b2 ≤ 6

∫ 1

0
|ax+ b(1− x)|2 dx,

which readily adapts on an interval of width h as

a2 + b2 ≤ 6

h

∫ h

0

∣∣∣a x

h
+ b
(

1− x

h
)
)∣∣∣

2
dx.

Thus we get

n−1

∑
p=0

∣∣∂yvh((2p+ 1)h,y)
∣∣2 ≤ 6

h

∫ 1

0

∣∣∂yvh(x,y)
∣∣2 dx

and finally integrating with respect to y,

|b(vh,qh)| ≤ 2h
√

n
(

1
h

∫ 1
0

∫ 1
0 |∂yvh|2dxdy

) 1
2

≤ 2
√

h
√

n‖∇vh‖L2 .

Thus we obtain, for any vh ∈ Xh,

|b(vh,qh)|
‖vh‖H1

≤C.

The inf-sup condition implies

βh‖qh‖L2 ≤ sup
vh∈Xh

|b(vh,qh)|
‖vh‖H1

≤C.

As ‖qh‖L2(Ω) is of order h−1, we have βh ≤Ch.

�

Previous examples shed a light on possible fails when
considering finite element approximations for the Stokes
problem. Let us give an outline of classical stable finite
elements.

6.2.3 The P1
b −P1 element

As we have seen before, the main reason for the in-
stability of the Q1 −Q0 or P1 −P0 approximation is the
fact that the pressure approximation space is too large
in some sense compared to the velocity approximation
space.

That is the reason why the construction of uniformly
stable approximation spaces for the Stokes problem are
often built starting from an unstable discretisation by
using one the two following strategies:

Either one can add functions (that is degrees of
freedom) in the velocity approximation space. This
induces a higher computational cost.

Or one can remove functions (that is degrees of
freedom) in the pressure approximation space. This
induces a lower accuracy of the approximation.

The choice of a suitable pair of approximation spaces is
thus a sort of tradeof between stability/accuracy/com-
putational effort.

A very popular element that is based on the first
strategy is the so-called mini-element, also denoted by
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P1− bubble / P1 or P1
b−P1, see [1]. It consists in adding

to the P1 −P1 element one degree of freedom for each
component of the velocity on the barycenters of the cells.
Let b̂ ∈ H1(K̂) denote a function which takes the value 1
at the barycenter of the reference cell K̂, vanishes on its
boundary ∂ K̂ and satisfies 0 ≤ b̂ ≤ 1. Such a function is
known as a bubble function. Define the space

P1
b = {v ∈ (C0(Ω̄))2, v◦TK ∈ (P1 ⊕ span{b̂})2, ∀K ∈ T }.

Taking Xh = P1
b and Mh = P1, the inf-sup constant does

not depend on h which ensures an optimal convergence
rate:

Theorem 6.6 (P1
b −P1 estimates) Let (Th)h be a reg-

ular family of meshes which satisfy the geometrical as-
sumption: each element K ∈ Th has at most one edge
on the boundary of Ω. Let Xh ×Mh be the approxima-
tion spaces related to the P1

b−P1 approximation. Assume
that the solution (u, p) of the Stokes problem belongs to
(H2(Ω))2×H1(Ω). Then we have the following estimate:

‖u−uh‖H1(Ω)+‖p− ph‖L2(Ω) ≤Ch
(
‖u‖H2(Ω)+ ‖p‖H1(Ω)

)
.

If furthermore the adjoint problem (which is still the
Stokes problem) has the elliptic regularity property in Ω
then

‖u− uh‖L2(Ω) ≤Ch2
(
‖u‖H2(Ω)+ ‖p‖H1(Ω)

)
.

The P1−bubble / P1 were defined by Arnold, Brezzi
and Fortin (1984), see [1], and its analysis relies on the
Clement interpolation operator which satisfies Fortin’s
lemma, hence the finite element satisfies a uniform inf-
sup condition. The mini-element is the simplest stable
element for the Stokes system.

6.2.4 The P2 −P1 (Taylor-Hood) element

We consider a simplicial mesh and the P2 −P1 ele-
ments:

Xh = {v ∈ (C0(Ω̄))2, ∀K ∈ T , v◦TK ∈ (P2)
2}∩ (H1

0 (Ω))2,

Mh = {v ∈C0(Ω̄), ∀K ∈ T , v◦TK ∈ P1}∩L2
0(Ω).

We can prove for a quite general simplicial mesh of Ω
that the inf-sup constant βh does not depend on h which
ensures an optimal convergence rate.

Proposition 6.7 (P2 −P1 finite elements) Let us as-
sume that each element K ∈ T has at most one edge on
the boundary of Ω. The spaces Xh and Mh satisfy a uni-
form inf-sup condition: the constant βh only depends on
the regularity of the mesh.

The geometrical assumption on the mesh is not re-
strictive.

Proof of Proposition 6.7. Let qh ∈ Mh \ {0}. We
aim at proving that there exists C > 0 (which does not
depend on h) and some vh ∈ Xh (which may depend on
qh) such that

b(vh,qh)

‖vh‖H1(Ω)

≥C‖qh‖L2(Ω).

Step 1. Definition of vh. For each edge σ of the mesh,
we denote τσ a unit vector of this edge and |σ | its length.
The element vh ∈ Xh is uniquely determined by defining
its values at the nodes as follows:

vh(a) = 0 if a is a vertex of the mesh;

vh(a) = −|σ |2 τσ (∇qh · τσ ) if a is the middle of an
interior edge σ ;

vh(a) = 0 if a is the middle of a boundary edge.

Let us note that

vh is zero on the boundary;

the definition of vh(a) is consistent if a is the mid-
dle of an interior edge. Indeed the gradient of qh is
a priori constant on each element and thus it has
no trace defined on the edges. But since qh is con-
tinuous through the edge, the tangential gradient
of qh is uniqueley defined on the edge.

We now use the following quadrature formula, which
is valid for the elements in P2: for all π ∈ P2, for all
K ∈ T ,

1

|K|

∫

K
π(x)dx = ∑

a∈M (K)

π(a)

5
− ∑

a∈S (K)

π(a)

20
,

where M (K) denotes the set of the all the middles of the
edges of K and S (K) denotes the set of the vertices of K

(this formula can be proved on the reference element and
then extended to any element with a change of variables).
We thus obtain

b(vh,qh) = −
∫

Ω
vh∇qh

= −∑
K

(∫

K
vh∇qh

)

=
1

5
∑
K

|K|
(

∑
σ∈∂K\∂Ω

|σ |2 (∇qh · τσ )
2

)
.(37)

Step 2. Estimate of |∇qh|. Let K be a triangle. We
consider an affine function on K and denote ui the value
of the function at the vertices Mi of K. We aim at con-
trolling the gradient of u with respect to the terms ui−u j.

For this we can see that the norm of vector ρK
∇u
|∇u| is ρK
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(see the definition of ρK in Proposition 5.21). Thus there
exists X ,Y ∈ K such that

X −Y = ρK
∇u

|∇u| .

We denote {xi}i=1,2,3 and {yi}i=1,2,3 the (nonnegative!)
barycentric coordinates12 of X and Y in the triangle and
we observe that, since u is affine, we have on the one
hand

u(X)− u(Y) = ∇u · (X −Y ) = ρK |∇u|

and, on the other hand,

u(X)− u(Y) = ∑
i, j

xiy j(u(Mi)− u(M j)) = ∑
i, j

xiy j(ui − u j).

By the Jensen inequality,

ρ2
K |∇u|2 ≤ ∑i, j xiy j

∣∣ui − u j

∣∣2
≤ |u1 − u2|2 + |u2 − u3|2 + |u3 − u1|2 .

Besides, since we have

|u1 − u2|2 ≤ (|u1 − u3|+ |u3 − u2|)2

≤ 2 |u3 − u1|2 + 2 |u2 − u3|2 ,

the estimate still holds with two terms, up to a constant:

ρ2
K |∇u|2 ≤ 3 |u1 − u2|2 + 3 |u1 − u3|2 .

Step 3. Bound from below for b(vh,qh). Let us go
back to the estimate of b(vh,qh), see Eq. (37). In the last
term,

|σ |2 (∇qh · τσ )
2 = |qh(aσ )− qh(bσ )|2

where aσ ,bσ denote the nodes associated to σ . Thus
each term |σ |2 (∇qh · τσ )

2 can be expressed as some

|qh(aσ )− qh(bσ )|2 .

Consequently, aK ,bK ,cK denoting the vertices of K and
assuming that the triangles could have at most one edge
in ∂Ω,

(∗) := ∑
σ∈∂K\∂Ω

|σ |2 (∇qh · τσ )
2

can be calculated:

if K ∩∂Ω = /0

(∗) = |qh(aK)− qh(bK)|2 + |qh(bK)− qh(cK)|2
+ |qh(cK)− qh(aK)|2

12i.e. (x1,x2 ,x3) is the unique triplet satisfying

xi ≥ 0, for all i = 1,2,3,

x1 + x2 + x3 = 1,

X = x1M1 + x2M2 + x3M3.

if [bK ,cK ]⊂ ∂Ω,

(∗) = |qh(aK)− qh(bK)|2 + |qh(aK)− qh(cK)|2 .

By Step 2, each term ∑σ∈∂K\∂Ω |σ |2 (∇qh · τσ )
2 can

be bounded from below by Cρ2
K |∇qh|2 so that we get the

estimate:

b(vh,qh) ≥ C∑
K

|K|ρ2
K |∇qh|2

≥ C∑
K

ρ2
K |qh|2H1(K)

≥ C∑
K

h2
K |qh|2H1(K) , (38)

as the mesh is regular.

Step 4. Estimate of ‖vh‖H1 . We choose K ∈ T and
φi a shape function such that

supp(φi)∩K 6= /0.

By Theorem 5.22, page 38,

|φi|H1(K) ≤C
|K|

1
2

ρK

(39)

Using the definition of vh, we have

vh =− ∑
a∈M (K), a∈σ

(
|σ |2 τσ (∇qh · τσ ))

)
φI(a),

where I(a) denotes the global numbering of the shape
function associated to a. Combined with Eq. (39) we
obtain

|vh|2H1(K) ≤ ∑
a∈M (K), a∈σ

C
|K|
ρ2

K

|σ |4 |∇qh|2

≤ C |K| h2
K

ρ2
K

h2
K |∇qh|2 .

Thus with the regularity property of the mesh,

|vh|2H1(K) ≤Ch2
K |qh|2H1(K)

and then
|vh|2H1(Ω) ≤C∑

K

h2
K |qh|2H1(K) . (40)

Conclusion. Combining Eqs. (38) and (40), we have

b(vh,qh)

‖vh‖H1(Ω)

≥C

(
∑
K

h2
K |qh|2H1(K)

) 1
2

.

Now since qh ∈ Mh ⊂ H1(Ω), its mean value is zero, so
that qh ∈ H̃1(Ω) and we have

(
∑
K

h2
K |qh|2H1(K)

) 1
2

= |qh|H1(Ω) = ‖∇qh‖L2(Ω) ≥C‖qh‖L2(Ω)
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by the Poincaré-Wirthinger inequality (see Theorem 1.20).
We finally obtain

b(vh,qh)

‖vh‖H1(Ω)

≥C‖qh‖L2(Ω).

Thus the uniform inf-sup condition is proved. �

Theorem 6.8 (P2 −P1 estimates) Let (Th)h a regular
family of meshes which satisfy the geometrical assump-
tion: each element K ∈ Th has at most one edge on the
boundary of Ω. Let Xh×Mh the approximation spaces re-
lated to the P2 −P1 approximation. Assume that the so-
lution (u, p) of the Stokes problem belongs to (H3(Ω))2 ×
H2(Ω). Then we have the following estimate:

‖u−uh‖H1(Ω)+‖p− ph‖L2(Ω) ≤Ch2
(
‖u‖H3(Ω)+ ‖p‖H2(Ω)

)
.

If furthermore the adjoint problem (which is still the
Stokes problem) has the elliptic regularity property in Ω
then

‖u− uh‖L2(Ω) ≤Ch3
(
‖u‖H3(Ω)+ ‖p‖H2(Ω)

)
.

Proof of Theorem 6.8. The interpolation results for
Xh and Mh are known: we apply Theorem 5.36, page 42,
with k = 2 and m = 2 and l = 1 for the velocity, k = 1

and m = 1 and l = 0 for the pressure):

∀v ∈ H3(Ω),
∣∣∣v−I k

h v

∣∣∣
H1(Ω)

≤Ch2 |v|H3(Ω) ,

∀p ∈ H2(Ω), ‖p−I k
h p‖L2(Ω) ≤Ch2 |p|H2(Ω) .

From Lemma 4.7 combined with Lemma 6.7 (uniform
inf-sup condition), we deduce the convergence of the
method.

From Lemma 4.10 (abstract error estimate) we get

‖u− uh‖X ≤
(

1+
‖a‖
α

)(
1+

‖b‖
βh

)
d(u,Xh)

+
‖b‖
α

d(p,Mh),

‖p− ph‖M ≤ ‖a‖
βh

(
1+

‖a‖
α

)(
1+

‖b‖
βh

)
d(u,Xh)

+

(
1+

‖b‖
βh

+
‖a‖
βh

‖b‖
α

)
d(p,Mh).

From these estimates combined with the above global
interpolation estimates, we deduce the error estimate.

The estimate in L2−norm readily adapts from the
Aubin-Nitsche trick. �

7. Problems

We now investigate the main results of the previous
sections by means of numerical simulations. For this pur-
pose we use a finite element solver, FreeFem++, which is
developed and maintained in Université Pierre & Marie
Curie and Laboratoire Jacques-Louis Lions [12]. Before
focusing on mathematical problems, let us briefly intro-
duce FreeFem++.

FreeFem++ is a free software designed to compute the
solution of initial- and boundary-value problems for par-
tial differential equations in 2D or 3D with the finite ele-
ment method. Its principle is based upon the discretiza-
tion of a variational formulation and the computation of
the solution of the resulting linear system. Multi-physics
nonlinear problems can be addressed through iterative
schemes that rely on a linear problem to solve at the
basic level.

The requirements for the user are the following ones:

1. define a domain: boundaries can be defined with
a simple parametrization;

2. define a mesh: the number of nodes on each la-
belled boundary is sufficient, as the software owns
a mesh generator that is able to produce triangu-
lations;

3. define approximation spaces (P0, P1, P1
b, P

2...);

Remark 7.1 At this point, FreeFem++ defines a
finite element basis which “lives” on the mesh of
the domain.

4. define a variational formulation: this is the most
specific part of the software, as a suitable syntax
is required (note that it is very close to the math-
ematical formulation).

Remark 7.2 At this point, FreeFem++ owns all
the tools leading to the corresponding discretized
problem: the software functionality consists in build-
ing the matrix and the right-hand side vector asso-
ciated to 1) the bilinear / linear form, 2) the finite
element space.

5. choose a linear solver (optional): FreeFem++ owns
different solvers, such as LU, Cholesky, Crout, CG,
GMRES, UMFPack, sparsesolver. Sparse systems
can be solved with sparsesolver, UMFPACK, GM-
RES, whereas full systems can be solved with LU,
Crout, Cholesky. The default choice is sparse-

solver (equivalent to UMFPACK if no sparse solver
is defined) or LU if no sparse solver is available.

LU is a direct method corresponding to the
LU decomposition method.
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Crout is a direct method for symmetric sys-
tems, based upon the LU decomposition method,
thus using specific properties due to the sym-
metric property of the matrix.

Cholesky is a direct method for symmetric
positive-definite systems, based upon the LU
decomposition method, thus using specific prop-
erties the matrix leading to a simple decom-
position.

CG (conjugate gradient method) is an iter-
ative method for symmetric positive-definite
systems.

GMRES is an iterative method for sparse sys-
tems (no additional assumption on the struc-
tural properties of the matrix is required). It
is a generalization of the conjugate gradient
method.

UMFPACK is a direct method for sparse systems
(no additional assumption).

Details (including download, documentation, exam-
ples etc.) can be found on http://www.freefem.org/.

7.1 Analysis of the convergence
Problem. Write a FreeFem++ program to solve a Poisson
problem with P1 or P2 finite elements. Quantify the error
in H1 and L2 norms with respect to the mesh size. �

Solution. Define u := xy(1−x)(1−y) and f := 2y(1−y)+
2x(1− x). It can be checked that the function u is the
unique variational solution in H1

0 (Ω) of −∆u = f in Ω =
]0,1[2. For a fixed mesh, we may compute corresponding
finite element solution uh and we aim at estimating ‖u−
uh‖H1 and ‖u− uh‖L2 (note that, for any h, the error
‖u− uh‖ should be computed on a fixed very fine mesh,
not on the coarse one). Assume that the error behaves
as

‖u− uh‖= O(hα),

where α is the order of the method in a chosen norm.
Then we have

log(‖u− uh‖) = α log(h)+ log(C).

As a consequence, α is numerically determined by iden-
tifying the derivative of the linear function

log(h) 7→ log(‖u− uh‖) = α log(h)+ log(C).

Using different values of {hi}i with corresponding values
of {‖u− uhi

‖}i (to be determined by solving the PDE
problem), a linear regression, or a visual inspection, al-
lows us to identify α.

Let us discuss the P1 approximation, see the left-
hand side of Figure 13.

• Numerical results provide the estimate ‖u−
uh‖H1 = O(h). This illustrates Theorem 5.10,
as u ∈ H1

0 (Ω)∩H2(Ω).

• Numerical results provide the estimate ‖u−
uh‖L2 =O(h2): as (P) satisfies the elliptic reg-
ularity property, the Aubin-Nitsche lemma
applies, see Lemma 5.11.

Let us discuss now the P2 approximation, see the
right-hand side of Figure 13.

• Numerical results provide the estimate ‖u−
uh‖H1 =O(h2). This illustrates Theorem 5.19,
as u ∈ H1

0 (Ω)∩H3(Ω).

• Numerical results provide the estimate ‖u−
uh‖L2 =O(h3): as (P) satisfies the elliptic reg-
ularity property, the Aubin-Nitsche lemma
applies, see Lemma 5.11 and Theorem 5.19.

�

7.2 Numerical treatment of the boundary conditions
Problem. Let f ≡ 1, α > 0 and ε > 0. Let us consider
the Laplace-Robin problem:

(Pε )

{ −∆u+αu = f in Ω =]0,1[2,

∇u ·n+ 1

ε
u = 0 on ∂Ω.

1. Write the variational formulation of the problem.
Write a FreeFem++ program to solve the problem
with P1 or P2 finite elements.

2. Discuss the behaviour of the solution of the Robin
problem as ε goes to 0.

3. Discuss the behaviour of the solution of the Robin
problem as ε goes to ∞.

�

Solution. Let us introduce the Laplace-Dirichlet and
Laplace-Neumann problems:

(P0)

{
−∆u+αu = f in Ω =]0,1[2,

u = 0 on ∂Ω,

(P∞)

{
−∆u+αu = f in Ω =]0,1[2,

∇u ·n = 0 on ∂Ω.

At least formally, we may expect that the solution uε of
(Pε)

converges to the solution of (P0) when ε goes to 0,

converges to the solution of (P∞) when ε goes to
+∞.
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Figure 13. Problem 7.1 : comparison between the P1 and P2 approximations

Let us use FreeFem++ as a validation tool for the
above formal asymptotics. In that prospect we need to
define the variational formulation of each problem: it
will allow us to define the suitable functional framework
of our problems and it will be the key for the computa-
tions with FreeFem++.

1. The variational formulations of the problems write:

(Pε)





Find u ∈ H1(Ω) such that∫

Ω
∇u ·∇v+α

∫

Ω
uv+

1

ε

∫

∂Ω
uv =

∫

Ω
f v,

for all v ∈ H1(Ω),

(P0)





Find u ∈ H1
0 (Ω) such that∫

Ω
∇u ·∇v+α

∫

Ω
uv =

∫

Ω
f v,

for all v ∈ H1
0 (Ω),

(P∞)





Find u ∈ H1(Ω) such that∫

Ω
∇u ·∇v+α

∫

Ω
uv =

∫

Ω
f v,

for all v ∈ H1(Ω).

Each problem is well-posed (for problem (Pε ), use
the continuity of the trace operator for the math-
ematical treatment of the boundary term in the
bilinear form) and we will denote uε , u0 and u∞

the respective solutions of the problems.

2. We fix α = 1 and f = 1 for the computations. We
use a mesh 200× 200 and, in fact, we compute
the error ‖uε,h − u0,h‖H1 . In the left-hand side of
Figure 14 we observe that, as ε goes to 0, uε,h

converges to u0,h in H1(Ω) at order 1:

‖uε,h − u0,h‖H1 ≃Cε.

Actually this is how FreeFem++ imposes Dirichlet
boundary conditions! The software considers all
the nodes as unprescribed (including the boundary
nodes). In order to prescribe u= g at the boundary,
the software considers a Robin condition

∇u ·n+ 1

ε
u =

1

ε
g,

with a very small value for ε: this is a so-called
penalty method, as the Dirichlet condition is mim-
icked by a penalized Robin condition. This also
explains how FreeFem++ is able to compute the so-
lution of a problem with a non-homogeneous con-

dition u = g, even if g /∈ H
1
2 (∂Ω).

The numerical results are compatible with the fol-
lowing result:

Proposition 7.3 (From Robin to Dirichlet) Let
uε be the variational solution of the Laplace-Robin
problem (Pε ) and let u0 be the solution of the Laplace-
Dirichlet problem (P0). Then uε converges to u0 in
H1(Ω) as ε goes to 0.

Assume furthermore that u0 ∈ H2(Ω). Moreover
‖uε − u0‖H1 converges to 0 at least at order 1/2.

Proof of Proposition 7.3.

We first take v = uε as a test function in (Pε) and
we use the Cauchy-Schwarz inequality to deduce
that

‖∇uε‖2
L2 +

α

2
‖uε‖2

L2 +
1

ε

∫

∂Ω
|uε |2 ≤

1

2α
‖ f‖2

L2 , ∀ε > 0.

It follows that the family uε is bounded in H1(Ω)
and that the traces γ0(uε) tends to 0 in L2(∂Ω)
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Figure 14. Problem 7.2. Illustrations of the convergence in the regimes ε → 0 and ε → ∞

as ε → 0. As a consequence, there exists a subse-
quence uεk

that weakly converges towards some u

in H1(Ω) and moreover, this limit satisfies γ0(u) =
0 that is u ∈ H1

0 (Ω).

Taking now a test function v ∈ H1
0 (Ω) in (Pε ), the

boundary term disappears and we can easily pass
to the limit as k goes to infinity. It follows that
u = u0, the unique solution of (P0). By Theorem
4.2, we obtain that the whole family uε weakly
converges to u0 in H1(Ω) as ε → 0. It remains to
show the strong convergence.

We set eε = uε −u0. We test the equation satisfied
by u0 by a test function v ∈ H1(Ω) and we subtract
the weak formulation of (Pε ) to get

∫

Ω
∇eε ·∇v+α

∫

Ω
eε v+

1

ε

∫

∂Ω
eε v

=−〈∇u0 ·n,v〉H−1/2,H1/2 , ∀v ∈ H1(Ω).

Taking v = eε as a test function in this last equa-
tion, we obtain

‖∇eε‖2
L2 +α‖eε‖2

L2 +
1

ε
‖eε‖2

L2(∂Ω)

=−〈∇u0 ·n,eε〉H−1/2,H1/2 . (41)

This last quantity converges to 0 since eε weakly
converges to 0 in H1(Ω) and the first claim is proved.

Assume now that u0 ∈H2(Ω), which implies in par-
ticular that ∇u0 · n ∈ L2(∂Ω), it follows that the
boundary term can be written as an integral in-
stead of duality bracket and can be estimated as

follows
∣∣∣∣
∫

∂Ω
∇u0 ·neε

∣∣∣∣

≤
(∫

∂Ω
|∇u0 ·n|2

)1/2(∫

∂Ω
|eε |2

)1/2

≤ ε

2

∫

∂Ω
|∇u0 ·n|2 +

1

2ε

∫

∂Ω
|eε |2 ,

by the Young’s inequality. Using this estimate in
the inequality (41) gives

‖∇eε‖2
L2 +α‖eε‖2

L2 +
1

2ε
‖eε‖2

L2(∂Ω) ≤
ε

2
‖u0‖2

H2 ,

and the proof is complete. �

3. We fix α = 1 and f = 1 for the computations. We
use a mesh 50×50 and we compute the error ‖uε,h−
u0,h‖H1 . In the right-hand side of Figure 14 we ob-
serve that, as ε goes to +∞, uε,h converges to u∞,h

in H1(Ω) at order 1:

‖uε,h − u∞,h‖H1 ≃ C

ε
.

The numerical results are compatible with the fol-
lowing result:

Proposition 7.4 (From Robin to Neumann)
Let uε be the variational solution of the Laplace-
Robin problem (Pε ) and let u∞ be the solution of
the Laplace-Neumann problem (P∞). Then uε con-
verges to the solution u∞ as ε goes to +∞. More-
over ‖uε −u∞‖H1 converges to 0 at least at order 1.

Proof of Proposition 7.4. We have
∫

Ω
∇uε ·∇v+α

∫

Ω
uεv+

1

ε

∫

∂Ω
uε v =

∫

Ω
f v,
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for all v ∈ H1(Ω). Taking v = uε as a test function,
we get

∫

Ω
|∇uε |2 +α

∫

Ω
u2 +

1

ε

∫

∂Ω
|uε |2 =

∫

Ω
f uε .

On the one hand,
∫

Ω
|∇uε |2 +α

∫

Ω
u2 +

1

ε

∫

∂Ω
|uε |2 ≥ min(1,α)‖uε‖2

H1

and, on the other hand,
∫

Ω
f uε ≤ ‖ f‖L2‖uε‖H1 .

Thus we obtain the estimate

‖uε‖H1 ≤ ‖ f‖L2

min(1,α)
. (42)

Remark 7.5 At this stage, we prove that uε weakly
converges to u∞ in H1(Ω). Indeed, {uε} is bounded
in H1(Ω), {uε} weakly converges, up to a subse-
quence, to some ū ∈ H1(Ω). Passing to the limit in
the variational formulation (note that γ0(uε) weakly
converges to γ0(ū) in L2(∂Ω), by continuity of the
trace operator), we get :

∫

Ω
∇ū ·∇v+α

∫

Ω
ūv =

∫

Ω
f v,

for all v ∈ H1(Ω). By uniqueness of the solution
of the Laplace-Neumann problem, ū = u∞.

Now defining eε = uε − u∞, we use the variational
formulations of the two problems and, by subtrac-
tion,
∫

Ω
∇eε ·∇v+α

∫

Ω
eε v+

1

ε

∫

∂Ω
uε v= 0, ∀v∈H1(Ω).

Then taking v = eε as a test function, we obtain
∫

Ω
|∇eε |2 +α

∫

Ω
e2

ε =−1

ε

∫

∂Ω
uε eε .

On the one hand,
∫

Ω
|∇eε |2 +α

∫

Ω
e2

ε ≥ min(1,α)‖eε‖2
H1

and, on the other hand,

−1

ε

∫

∂Ω
uεeε ≤

C

ε
‖uε‖H1‖eε‖H1 ,

where we have used the Cauchy-Schwarz inequality
and the continuity of the trace operator. Combin-
ing the previous inequalities and the estimate on
‖uε‖H1 , see Eq. (42), we get

‖eε‖H1 ≤ ‖ f‖L2

min(1,α)2

1

ε
,

which concludes the proof. �

�

7.3 On a Dirichlet boundary term g /∈ H1/2(∂Ω)
Problem. Consider the Poisson problem on a unit square
Ω =]0,1[2 with a source term f ≡ 1 and Dirichlet bound-
ary conditions: for this purpose, we denote Γ :=]0,1[×{0}
and consider the problem

{
−∆u = f in Ω,

u = g on ∂Ω,

where the boundary data is defined as

g(x) =

{
1 if x ∈ Γ,
0 if x ∈ ∂Ω\Γ.

We recall that g does not belong to H
1
2 (∂Ω), see Exer-

cise 1.
Compute the P1 finite element solution uh and dis-

cuss the behaviour of ‖uh‖H1 as h goes to 0. �

Solution. Let us define two problems (P(i)), for i∈ {0,1}:

(P(i))

{
−∆u = f in Ω,

u = g(i) on ∂Ω,

with the corresponding boundary terms:

g(0)(x) =

{
0 if x ∈ Γ,
0 if x ∈ ∂Ω\Γ,

g(1)(x) =

{
0 if x ∈ Γ,
1 if x ∈ ∂Ω\Γ.

We denote u
(0)
h and u

(1)
h the corresponding finite element

solutions, see Figures 15 and 16.

Analysis of Problem (P(0)). The finite element solu-
tion of (P(0)) converges to the unique variational solu-
tion u(0) ∈ H1

0 (Ω), since f ∈ L2(Ω) (actually, f ∈ H−1(Ω)
would be sufficient). In our case, the domain being
polygonal and convex, we may even prove that u(0) ∈
H2(Ω). As a consequence, if we use P1 finite elements,

u
(0)
h strongly converges to u(0) in H1(Ω) at order 1. Fig-

ure 17 illustrates the convergence of ‖u
(0)
h ‖H1 to ‖u(0)‖H1 .

Analysis of Problem (P(1)). The behaviour of the fi-
nite element solution of (P(1)) is quite different: indeed

g(1) /∈ H
1
2 (∂Ω) and thus the lift operator cannot be ap-

plied. Actually the discrete linear problem is well-posed

but the finite element solution u
(1)
h does not converge to

an element in H1(Ω): problem (P(1)) admits no solution
in H1(Ω). In particular singularities concentrate at the
corners (0,0) and (0,1), which means that the gradient
locally explodes, see Figure 16. Figure 17 illustrates the
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divergence of ‖u
(1)
h
‖H1 , as the limit of u

(1)
h

does not be-
long to H1(Ω).

These computations provide an example of the criti-
cal assumptions on the non-homogeneous boundary term:

if g does not belong to H
1
2 (∂Ω) then the lift operator

cannot be used in order to settle a classical variational
formulation in H1(Ω), see Section 2.2.

�

7.4 Compatibility conditions in PDE

Problem. Solve with FreeFem++ the Poisson-Neumann
problem:

{
−∆u = f in Ω =]0,1[2,

∇u ·n = g on ∂Ω.

with f ∈ L2(Ω) and g ∈ H− 1
2 (∂Ω). �

Solution.

Mathematical framework. The mathematical frame-
work and the analysis of the problem are required before
thinking about writing a FreeFem++ solver for this prob-
lem. The mathematical analysis was done in section 2.
In this problem, we recall the two main issues:

The well-posedness requires the (necessary) com-
patibility condition:

∫

Ω
f + 〈g,1〉

H
− 1

2 ,H
1
2
= 0. (43)

The solution cannot be unique in H1(Ω): we may
add any constant to a solution, thus defining an-
other solution. In order to select a unique solution
(thus fixing the constant) we impose

∫

Ω
u = 0, (44)

hence dealing with the functional space H̃1(Ω).

Thus the variational formulation writes

(P)





Find u ∈ H̃1(Ω) such that∫

Ω
∇u ·∇v =

∫

Ω
f v+ 〈g,v〉

H
− 1

2 ,H
1
2
,

for all v ∈ H̃1(Ω)

which is a well-posed problem under the compatibility
condition of Eq. (43).

How to deal with the constraint in the functional
space? Basically the main idea consists in fixing the
constant which is equivalent to providing some coercivity

to the problem. Instead of solving problem (P), we may
solve a penalized version of the problem:

(Pε)





Find uε ∈ H1(Ω) such that∫

Ω
∇uε ·∇v+ ε

∫

Ω
uε v =

∫

Ω
f v+ 〈g,v〉

H
− 1

2 ,H
1
2
,

for all v ∈ H1(Ω),

which is the variational formulation of problem
{

−∆uε + εuε = f in Ω =]0,1[2,
∇uε ·n = g on ∂Ω.

In problem (Pε ), the functional framework relies on H1(Ω)
(and not H̃1(Ω)) as the mean value of the solution is not
necessarily zero). Note that, under the compatibility
assumption, by taking v ≡ 1 as a test function we have

ε

∫

Ω
uε =

∫

Ω
f v+ 〈g,v〉

H
− 1

2 ,H
1
2
= 0.

Thus the approximate solution uε has also zero mean
value (this property emerges from the compatibility con-
dition, it is not imposed by the functional framework).
We now may prove the following:

Proposition 7.6 (Convergence) Let f ∈ L2(Ω) and

g ∈ H− 1
2 (∂Ω). Assume that the compatibility condition

(43) is satisfied. Let uε be the variational solution of the
Laplace-Neumann problem (Pε ) and let u be the solution
of the Poisson-Neumann problem (P). Then uε converges
to u as ε goes to 0. Moreover ‖uε − u‖H1 converges to 0
at least at order 1.

Proof of Proposition 7.6.
Bound for |uε |H1(Ω). We observe that uε ∈ H̃1(Ω) for
each ε and we recall that, by the Poincaré-Wirtinger
inequality, see Theorem 1.20, page 5, |·|H1(Ω) is a norm

on H̃1(Ω). Taking v = uε as a test function in (Pε ) yields

|uε |2H1(Ω)+ ε‖uε‖2
L2(Ω)

≤ ‖ f‖L2(Ω)‖uε‖L2(Ω)

+Cγ0
‖g‖

H
− 1

2 (∂Ω)
‖uε‖H1(Ω),

where we have used the Cauchy-Schwarz inequality and
the continuity of the trace operator. Thus, we have

|uε |2H1(Ω) ≤ |uε |2H1(Ω)+ ε‖uε‖2
L2(Ω)

≤ (‖ f‖L2(Ω)+Cγ0
‖g‖

H
− 1

2 (∂Ω)
)‖uε‖H1(Ω)

≤ C |uε |H1(Ω) ,

where C only depends on f , g, γ0 and Ω. Thus {uε} is
bounded in H1(Ω).

Estimate for eε := uε − u. In the variational formula-
tion of problem (P), thanks to the compatibility condi-
tion, test functions can be taken in H1(Ω) and not only
H̃1(Ω), see Section 2.2. Thus we have, for all v ∈ H1(Ω):
∫

Ω
∇uε ·∇v + ε

∫

Ω
uε v =

∫

Ω
f v+ 〈g,v〉

H
− 1

2 ,H
1
2
,

∫

Ω
∇u ·∇v =

∫

Ω
f v+ 〈g,v〉

H
− 1

2 ,H
1
2
,
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Figure 15. (1) finite element solution u
(0)
h and (2) finite element solution u

(1)
h . In both cases the mesh size is

h = 2 ·10−3 and the solution is computed with P1 finite elements.
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‖∇u
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175

Figure 16. (1) x 7→ ‖∇u
(0)
h (x)‖2 and (2) x 7→ ‖∇u

(1)
h (x)‖2. In both cases the mesh size is h = 2 ·10−3 and the solution

is computed with P1 finite elements.
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Figure 17. Problem 7.3. Influence of the regularity of the boundary data.

and, taking the difference,
∫

Ω
∇eε ·∇v+ ε

∫

Ω
uε v = 0, ∀v ∈ H1(Ω).

Note that eε ∈ H̃1(Ω) for each ε. Then taking v = eε in
the above equation, we get

|eε |2H1(Ω) = −ε
∫

Ω uε eε

≤ ε‖uε‖L2(Ω)‖eε‖L2(Ω)

≤ ε‖uε‖H1(Ω)‖eε‖H1(Ω),

by the Cauchy-Schwarz inequality. Then using the bound-
edness of {uε} and the equivalence of |·|H1(Ω) and ‖ ·
‖H1(Ω) on H̃1(Ω), we obtain

|eε |H1(Ω) ≤Cε,

where C only depends on f , g, γ0 and Ω. �

Thus, in practical computations with FreeFem++, we
may solve (Pε ) with e.g. ε = 10−6: it is sufficient to
ensure the stability of the computations and Proposition
7.6 guarantees that the penalized solution is close to the
exact solution. But we should be very careful with the
compatibility condition:

if the compatibility condition is not satisfied, tak-
ing too small values of ε in the penalized problem
does not work: as ε goes to 0, the limit problem
is ill-posed (recall that the compatibility condition
is a necessary condition for the well-posedness of
(P));

the compatibility condition has to be satisfied at
the discrete level as well: thus, the projections of
the data f and g over the finite element spaces
have to be done carefully.

Figure 18 was obtained with FreeFem++ computa-
tions by solving the Poisson-Neumann problem (in fact,
the penalized version with ε = 10−8) on the unit square
in two situations:

1. By choosing

f (x,y) = 0,

and

g(x,y) =





x(1− x), on ]0,1[×{0},
0, on {0}×]0,1[,

−x(1− x), on ]0,1[×{1},
0, on {1}×]0,1[,

the compatibility condition is satisfied and we ob-
tained the (penalized) solution of our problem.

2. Replacing f ≡ 0 by f ≡ 1, the compatibility condi-
tion is not satisfied anymore and FreeFem++ pro-
vides a nonsense solution with an amplitude of
10+8: when ε is small, the L∞−norm of the (pe-
nalized) solution behaves as ε−1 illustrating the
fact that the limit problem is ill-posed.

�

7.5 Lack of regularity and error estimates

Problem. Let Ω =]0,1[2, (x0,y0) ∈ Ω. The source term
and the boundary conditions are chosen so as

u(x,y) =
(
(x− x0)

2 +(y− y0)
2
) α

2

is the solution of the Poisson problem.
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(1)

uh

−0.10

0.10

0

(2)

uh

1.00925 ·10+8

1.00924 ·10+8

Figure 18. Solution of the Poisson-Neumann problem by penalization: (1) the compatibility condition is satisfied;
(2) the compatibility condition is not satisfied.

1. Prove that the regularity of u critically depends
on α:

u ∈





H1(Ω), if 0 < α ≤ 1,
H2(Ω), if 1 < α ≤ 2,
H3(Ω), if 2 < α.

2. Using FreeFem++, discuss the convergence rate of
the approximations obtained by the P1 or P2 finite
element method, depending on the value of α.

�

Solution.

1. For the sake of simplicity (and without loss of gen-
erality), we consider Ω = B(0,1) (the unit ball)
and (x0,y0)= (0,0). Let us compute the derivatives
of the function and their related L2 integrability.

At order 0, we have

u(x,y) = (x2 + y2)
α
2

and, as a consequence,

∫

B(0,1)
u2 =

∫ 2π

0

∫ 1

0
r2α r dr dθ = 2π

∫ 1

0
r2α+1 dr.

Note that r 7→ r2α+1 ∈ L1(0,1) if, and only if,
2α + 1 >−1.

As a conclusion, u ∈ L2(B(0,1)) if, and only
if, α >−1.

At order 1, we have

∂xu(x,y) = αx(x2 + y2)
α
2 −1,

∂yu(x,y) = αy(x2 + y2)
α
2 −1

and, as a consequence,

∫

B(0,1)
|∇xu|2 = α2

∫ 2π

0

∫ 1

0
r2α−2 r dr dθ

= 2πα2

∫ 1

0
r2α−1 dr.

Note that r 7→ r2α−1 ∈ L1(0,1) if, and only if,
2α − 1 >−1.

As a conclusion, u ∈ H1(B(0,1)) if, and only
if, α > 0.

At order 2, we have

∂xxu(x,y) = α(x2 + y2)
α
2 −1

+α(α − 2)x2(x2 + y2)
α
2 −2,

∂xyu(x,y) = α(α − 2)xy(x2 + y2)
α
2 −2,

∂yyu(x,y) = α(x2 + y2)
α
2 −1

+α(α − 2)y2(x2 + y2)
α
2 −2

and

∂yxu = ∂xyu.

Then, computing (∂xxu)2, (∂xyu)2, (∂yyu)2, in-
tegrating over B(0,1) and using the change
of coordinates (x,y) = (r cosθ ,r sinθ ), we get

∫

B(0,1)
|∂xxu|2 = C1

∫ 1

0
r2α−3 dr,

∫

B(0,1)

∣∣∂xyu
∣∣2 = C2

∫ 1

0
r2α−3 dr,

∫

B(0,1)

∣∣∂yyu
∣∣2 = C3

∫ 1

0
r2α−3 dr
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with

C1 = 2πα2 +α2(α − 2)2
∫ 2π

0
cos4 θ dθ

+α2(α − 2)

∫ 2π

0
cos2 θ dθ ,

C2 = α2(α − 2)2
∫ 2π

0
cos2 θ sin2 θ dθ ,

C3 = 2πα2 +α2(α − 2)2
∫ 2π

0
sin4 θ dθ

+α2(α − 2)

∫ 2π

0
sin2 θ dθ .

Note that r 7→ r2α−3 ∈ L1(0,1) if, and only if,
2α − 3 >−1.

As a conclusion, u ∈ H2(B(0,1)) if, and only
if, α > 1.

At order 3, we have

∂xxxu(x,y)

=C0

(
3x(x2 + y2)

α
2 −2 + x3(α − 4)(x2 + y2)

α
2 −3
)
,

∂xxyu(x,y)

=C0

(
y(x2 + y2)

α
2 −2 +(α − 4)x2y(x2 + y2)

α
2 −3
)
,

∂yyxu(x,y)

=C0

(
x(x2 + y2)

α
2 −2 +(α − 4)y2x(x2 + y2)

α
2 −3
)
,

∂yyyu(x,y)

=C0

(
3y(x2 + y2)

α
2 −2 + y3(α − 4)(x2 + y2)

α
2 −3
)

with C0 = α(α − 2), and

∂yxxu = ∂xyxu = ∂xxyu, ∂xyyu = ∂yxyu = ∂yyxu.

Then, computing (∂xxxu)2, (∂xxyu)2, (∂yyxu)2,
(∂yyyu)2, integrating over B(0,1) and using
the change of coordinates (x,y)= (r cosθ ,r sin θ ),
we get

∫

B(0,1)
|∂xxxu|2 = C′

1

∫ 1

0
r2α−5 dr,

∫

B(0,1)

∣∣∂xxyu
∣∣2 = C′

2

∫ 1

0
r2α−5 dr,

∫

B(0,1)

∣∣∂yyxu
∣∣2 = C′

3

∫ 1

0
r2α−5 dr,

∫

B(0,1)

∣∣∂yyyu
∣∣2 = C′

4

∫ 1

0
r2α−5 dr,

where C′
i denotes a constant13. Note that r 7→

13with

C′
1 = C2

0

(
9
∫ 2π

0 cos2 θ dθ +(α −4)2
∫ 2π

0 cos6 θ dθ

+6(α −4)
∫ 2π

0 cos4 θ dθ
)
,

C′
2 = C2

0

(∫ 2π
0 sin2 θ dθ +(α −4)2

∫ 2π
0 cos4 θ sin2 θ dθ

+(α −4)
∫ 2π

0 cos2 θ sin2 θ dθ
)
,

C′
3 = C2

0

(∫ 2π
0 cos2 θ dθ +(α −4)2

∫ 2π
0 sin4 θ cos2 θ dθ

+(α −4)
∫ 2π

0 cos2 θ sin2 θ dθ
)
,

C′
4 = C2

0

(
9
∫ 2π

0 sin2 θ dθ +(α −4)2
∫ 2π

0 sin6 θ dθ

+6(α −4)
∫ 2π

0 sin4 θ dθ
)
.

r2α−5 ∈ L1(0,1) if, and only if, 2α − 5 >−1.

As a conclusion, u ∈ H3(B(0,1)) if, and only
if, α > 2.

2. Figure 19 represents the solution for different val-
ues of α. In particular the behaviour of the solu-
tion near the point (0.5,0.5) illustrates the regu-
larity issue that has been discussed above.

Let us focus on the numerical computation of the
solution. By Lemma 4.1 and the approximability
property of P1 and P2 with respect to H1(Ω), the
numerical solution uh converges to the exact solu-
tion u in H1(Ω). But what is the rate of conver-
gence?

Theorem 5.10 states that the P1 method converges
at first order in H1, provided the solution is at least
H2.

Theorem 5.19 states that the P2 method converges
at second order in H1, provided the solution is at
least H3.

The convergence in the L2 norm illustrates Theo-
rem 5.11 when u ∈ H2(Ω). Note that the adjoint
problem is identical to the initial problem by sym-
metry of the bilinear form so that it satisfies the
elliptic regularity property since the domain Ω is
convex.

Focusing on the error in the H1 norm, Figure 20
illustrates the above theorems by observing the
numerical orders of convergence for α = 0.5, 1.5
and 2.5. Optimality of the finite element method
is achieved with the P1 elements for α = 1.5 and
α = 2.5 (with a numerical order that is close to 1)
but not for α = 0.5: in this case the convergence is
suboptimal because the solution does not belong
to H2. Optimality of the finite element method is
achieved with the P2 elements for α = 2.5 (with
a numerical order that is close to 2) but not for
α = 0.5 and α = 1.5: in these cases the conver-
gence is suboptimal because the solution does not
belong to H3. Similar observations can be led with
the L2 analysis.

�

7.6 Finite elements for the Stokes system
Problem. Write a FreeFem++ program to investigate the
finite element method applied to the Stokes problem. �

Solution. The major issue discussed in Section 6, is
whether or not the couple of approximation spaces cho-
sen for a variationnal problem in mixed form satisfies the
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u
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0.42

0.00

u
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0.30
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u
0.42

0.21

0.00

(a) (b) (c)

Figure 19. Function u : (x,y) 7→ ((x− 0.5)2+(y− 0.5)2)
α
2 for different values of α: (a) α = 0.5, (c) α = 1.5,

(c) α = 2.5.

(uniform) inf-sup condition at the discrete level. In order
to get well-posedness of the discretized Stokes problem,
the functional spaces Xh and Mh (for the velocity and
pressure, respectively) should indeed satisfy the inf-sup
condition. Figures 21 to 23 exhibit the numerical solu-
tion of a Stokes problem with different approximation
spaces.

Consider the domain Ω =]0,1[2 and B denotes the
ball of center (0.5,0.5) and radius r = 0.25 and define the
components of the source term f as f1 = f2 = 50× 1B.
We consider the (variational) Stokes problem:





Find (u, p) ∈ (H1
0 (Ω))2 ×L2

0(Ω) such that∫

Ω
∇u : ∇v−

∫

Ω
p div(v) =

∫

Ω
f · v,

∫

Ω
q div(u) = 0,

for all (v,q) ∈ (H1
0 (Ω))2 ×L2

0(Ω).

In order to illustrate the influence of the choice of the
approximation spaces, we use a structured mesh14.

Figure 21 deals with P1 −P0 finite elements: the
locking effect is illustrated, see Proposition 6.2, as
the numerical velocity field is 0, which evidences
the failure of the approximation.

Figure 22 deals with P1 −P1 finite elements: the
checkerboard effect on the pressure field is illus-
trated. In particular, spurious oscillations strongly
depend on the mesh size, producing an unrealistic
pressure field. The P1−P1 finite elements have the
same drawback as the Q1 −P0 finite elements for
which the checkerboard effect has been proved, see
Proposition 6.3.

Figure 23 deals with P1
b−P1 finite elements, which

are inf-sup stable.

14The locking effect associated to the P1 −P0 finite elements is
proved under the assumption of a structured triangular mesh, see
Proposition 6.2, page 46.

Figure 24 deals with P2−P1 finite elements, which
are also inf-sup stable. Besides, these finite ele-
ments are more precise than the P1

b −P1 finite ele-
ments. As a consequence, as the exact solution is
regular, the numerical simulation provides a better
approximation at fixed size mesh.

�

7.7 Uzawa algorithm for saddle-point problems

Problem. Consider a domain Ω and a subdomain B ⊂Ω.
Let f ∈ L2(Ω). Define

J(v) :=
1

2

∫

Ω
|∇u|2 + 1

2

∫

Ω
u2 −

∫

Ω
f v,

V =

{
v ∈ H1(Ω),

∫

B
v = 0

}
.

Solve with FreeFem++ the minimization problem:

{
Find u ∈V such that
J(u) = min

v∈V
J(v).

�

Solution. This problem is the application of Example 1
developped in Section 3. By the Lax-Milgram theorem,
the minimization problem is equivalent to a variational
formulation associated to the functional space V . From
the numerical point of view, dealing with V is difficult
because we cannot build finite elements in a finite dimen-
sional subspace of V , because of the constraint. Never-
theless, the solution u of the minimization problem is
the first component of the solution of the saddle-point
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Figure 20. Error analysis of the finite element method in H1 and L2 for various regularity of the exact solution.
From top to bottom α = 0.5, α = 1.5, and α = 2.5.
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Figure 21. Numerical solution of the Stokes system with P1 −P0 finite elements. Velocity field and pressure field
for 1) h = 0.067 and 2) h = 0.020.
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Figure 22. Numerical solution of the Stokes system with P1 −P1 finite elements. Velocity field and pressure field
for 1) h = 0.067 and 2) h = 0.020.
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Figure 23. Numerical solution of the Stokes system with P1
b −P1 finite elements. Velocity field and pressure field

for 1) h = 0.067 and 2) h = 0.020.
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Figure 24. Numerical solution of the Stokes system with P2 −P1 finite elements. Velocity field and pressure field
for 1) h = 0.067 and 2) h = 0.020.



Introducción al método de los elementos finitos 69

problem:

(Q)





Find (u,λ ) ∈ H1(Ω)×R such that∫

Ω
∇u ·∇v+

∫

Ω
uv+λ

∫

B
v =

∫

Ω
f v,

µ

∫

B
u = 0,

for all (v,µ) ∈ H1(Ω)×R.

We can prove that problem (Q) is well-posed (see Sub-
section 3.3). The main advantage of this formulation is
that (Q) is now a problem without constraint.

Uzawa algorithm. From the numerical point of view,
the solution of the (discretized version of the) saddle-
point problem can be defined by solving directly the cor-
responding linear system. However, by nature, this lin-
ear system does not have a nice symmetric definite posi-
tive structure for which efficient solver can be used. That
is the reason why many specific iterative algorithms have
been developed in the literature to solve such linear sys-
tems.

Here we present one of those alternative methods,
which is iterative: for each iteration, a first step only
requires to solve the elliptic contribution of the problem
and then a second step consists in updating the Lagrange
multiplier. The Uzawa algorithm is often used to solve
saddle-point problems. In the literature it is often pre-
sented in a finite dimensional framework but it makes
sense also in the infinite dimensional framework: if a
solution exists, then the algorithm converges! Let us
present the algorithm in different forms.

Abstract problem. Let X and M be Hilbert
spaces, a(·, ·) a continuous bilinear form on X ×X ,
b a continuous bilinear form on X ×M. For all
L ∈ X ′, for all G ∈ M′, we aim at solving the varia-
tional problem





Find (u, p) ∈ X ×M such that
a(u,v)+ b(v, p) = L(v),

b(u,q) = G(q),
for all (v,q) ∈ X ×M.

Then, for a given parameter ρ > 0, the Uzawa al-
gorithm writes:

Choose p0 ∈ M.
for n = 0, ...,+∞

1. Solve the elliptic problem



Find un+1 ∈ X such that
a(un+1,v) = L(v)− b(v, pn),
for all v ∈ X .

2. Update the Lagrange multiplier



Find pn+1 ∈ M such that
(pn+1,q) = (pn,q)+ρ(b(un+1,q)−G(q)),
for all q ∈ M.

enddo

Operators. Defining A : X → X ′ as 〈Au, ·〉X ′,X =
a(u, ·) and B : X → M′ as 〈Bv, ·〉M′ ,M = b(v, ·), the
formulation is equivalent to





Find (u, p) ∈ X ×M such that
Au+B′p = L,

Bu = G,

where B′ : M → X ′ is the adjoint operator of B, the
bidual of M being identified to M itself. Then the
Uzawa algorithm writes:

Choose p0 ∈ M.
for n = 0, ...,+∞

1. Solve for the principal unknown:{
Find un+1 ∈ X such that
Aun+1 = L−B′pn,

2. Update the Lagrange multiplier:{
Define pn+1 ∈ M by
pn+1 = pn +ρ(Bun+1−G).

enddo

Proposition 7.7 (Uzawa algorithm) Assume that the
saddle-point problem admits a solution. Then the se-
quence {un} defined by the Uzawa algorithm converges
to the solution of the corresponding minimization prob-
lem if

0 < ρ <
2α

‖B‖2
,

where α is the coercivity constant of a(·, ·).

Proof of Proposition 7.7. We have

pn+1 = pn + ρ(Bun+1 −G),
p = p + ρ(Bu−G),

hence
pn+1 − p = pn − p+ρB(un+1− u).

Then

‖pn+1 − p‖2
M

= ‖pn − p‖2
M + 2ρ

(
pn − p,Bun+1− u

)
M

+ρ2‖B(un+1 − u)‖2
M

= ‖pn − p‖2
M + 2ρ

(
B′(pn − p),un+1− u

)
X

+ρ2‖B(un+1 − u)‖2
M

= ‖pn − p‖2
M − 2ρ

(
A(un+1 − u),un+1− u

)
X

+ρ2‖B(un+1 − u)‖2
M

≤ ‖pn − p‖2
M −ρ(2α −ρ‖B‖2)‖un+1 − u‖2

X .

Thus if the condition on ρ is satisfied, the series

∑
n

‖un+1 − u‖2
X ,

is convergent. As a consequence, {un} converges to u.
The equation satisfied by pn − p is thus

B′(pn − p) =−A(un+1 − u),
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which gives, for any v ∈ X

b(pn − p,v) =−a(un+1 − u,v)≤ ‖a‖‖un+1− u‖‖v‖.

By the inf-sup condition we obtain

β‖pn − p‖ ≤ sup
v∈X

b(pn − p,v)

‖v‖ ≤ ‖a‖‖un+1− u‖,

and the convergence of pn to p is proved. �

In practice, the algorithm stops running when an er-
ror criterion on the Lagrange multiplier is met.

Application. Let us apply the Uzawa algorithm to our
problem. It reads

Define λ 0 = 0.
for n = 0, ...,+∞

1. Solve the problem



Find un+1 ∈ H1(Ω) such that∫

Ω
∇un+1 ·∇v+

∫

Ω
un+1v =

∫

Ω
f v−λ n

∫

B
v,

for all v ∈ H1(Ω).
2. Solve the problem{

Find λ n+1 ∈R such that

λ n+1 = λ n +ρ

∫

B
un+1.

enddo

Let us compute the range of admissible values for the
Uzawa parameter ρ in our constrained problem. For
the sake of simplicity, we assume that Ω =]0,1[2. The
coercivity constant is α = 1. Then, for all u ∈ H1(Ω),

|Bu|=
∣∣∣∣
∫

B
u

∣∣∣∣≤
∫

B
|u| ≤ |B| 1

2 ‖u‖L2(Ω) ≤ |B| 1
2 ‖u‖H1(Ω),

so that

‖B‖ := sup
u∈H1(Ω)

|Bu|
‖u‖H1(Ω)

≤ |B|
1
2 .

Moreover, taking ũ ≡ 1 yields

|Bũ|
‖ũ‖H1(Ω)

=
|B|
|Ω|

1
2

= |B| .

Thus,

if |B| = 1 (i.e. if B = Ω), then the bound is obvi-
ously attained and

‖B‖= 1.

if |B|< 1, we have

‖B‖= |B| ,

which is consistent with the case |B|= 1.

Then the Uzawa parameter should be chosen as

0 < ρ < ρmax :=
2

|B|2
.

Numerical results. Let us present some numerical
simulations: B is the disk of center (0.5,0.5) and radius
r = 0.2. We define the source term as

f (x,y) =

{
1, if (x,y) ∈ B,

−1, if (x,y) /∈ B.

In practice the Uzawa algorithm stops running when the
user estimates that convergence of {λ n} has been numer-
ically reached. Thus we define for instance tol = 10−8

and the computations will stop as soon as
∣∣λ n+1 −λ n

∣∣ < tol,

or, alternatively,
∣∣λ n+1 −λ n

∣∣
ρ

< tol

in which case the stopping test addresses the numerical
constraint ‖Bun −G‖.

Choosing

ρ =
ρmax

2
,

the algorithm converges and produces the numeri-
cal solution (uh,λh) where uh is represented on Fig-
ure 25 and λh =−5.25807. Actually, with our fixed
tolerance and our choice for ρ , the algorithm con-
verges in 11 iterations and, in the end, satisfies∫

B uh = 5.86 ·10−11 which is quite satisfactory.

As it was outlined the choice of ρ has a critical im-
pact on the behaviour of the algorithm. Figure 26
exhibits the behaviour of the sequence {λ n} for var-
ious values of the Uzawa parameter: for ρ > ρmax,
the method does not converge. For ρ < ρmax the
method converges but the choice of ρ critically
rules the the rate of convergence: it is optimal for
ρ = 0.5 ·ρmax whereas it is deteriorated when too
small or too close to ρmax.

Remark 7.8 The Stokes problem can be solved itera-
tively with the Uzawa algorithm: the elliptic part reduces
to a vector Laplace problem (for which all the compo-
nent of the velocity can be uncoupled) whereas the update
of the Lagrange multiplier (the pressure field) reduces
to a simple computation. Let Ω be a bounded domain,
f ∈ L2(Ω) and consider the Stokes problem:





Find (u, p) ∈ (H1
0 (Ω))2 ×L2

0(Ω) such that∫

Ω
∇u : ∇v−

∫

Ω
p div(v) =

∫

Ω
f · v,

∫

Ω
q div(u) = 0,

for all (v,q) ∈ (H1
0 (Ω))2 ×L2

0(Ω).

Then the Uzawa algorithm writes:



Introducción al método de los elementos finitos 71

uh

+0.032

−0.049

−0.130

Figure 25. Solution of the saddle-point problem with the Uzawa algorithm. The solution uh numerically satisfies∫
B uh = 0.
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Figure 26. Convergence of the Lagrange multiplier with the Uzawa algorithm for different values of ρ .
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Choose p0 ≡ 0.
for n = 0, ...,+∞

1. Solve the elliptic problem



Find un+1 ∈ (H1
0 (Ω))2 such that∫

Ω
∇un+1 : ∇v =

∫

Ω
pn div(v)+

∫

Ω
f · v,

for all v ∈ (H1
0 (Ω))2.

2. Update the Lagrange multiplier



Find pn+1 ∈ L2(Ω) such that∫

Ω
pn+1q =

∫

Ω
pnq−ρ

∫

Ω
q div(un+1),

for all q ∈ L2(Ω).
enddo

Notice that the initialization p0 ≡ 0 guarantees that
the Lagrange multiplier has zero mean value at each time
step: choosing q ≡ 1 as a test function, we get by the
Lagrange multiplier equation

∫

Ω
pn+1 =

∫

Ω
pn −ρ

∫

Ω
div(un+1)

=

∫

Ω
pn −ρ

∫

∂Ω
un+1 ·n

=

∫

Ω
pn,

hence the property inherited from the initialization step.

�

7.8 A fluid-structure interaction problem

Problem. We aim at describing the interaction between
a rigid particle and an incompressible Newtonian fluid.
Let Ω be the unit square in R2. Let B(t) ⊂ Ω a rigid
particle with a center of mass xB(t), angular position θB(t).
Inertial effects are neglected, which leads us to consider
the instantaneous equilibrium of forces within the fluid
and for the particle. Thus, at each time t, we consider
the Stokes equations in the fluid domain:

(FSI1)





−div(2µD(u)− pI) = ff in Ω\B(t),
div(u) = 0 in Ω\B(t),

u = U r on ∂B(t).

Here µ denotes the fluid viscosity and ff := −ρf gey de-
notes the gravity force exerted on the fluid (with den-
sity ρf). D(u) := 1

2 (∇u+(∇u)t) is the strain tensor. The
boundary condition at the fluid-particle interface ∂B(t)
is a no-slip condition: the particle has a rigid move-
ment which is decomposed into a translational move-
ment (with translational velocity U) and a rotational
movement (with rotational velocity ω),

U r(t,x) =U(t)+ω(t)(x− xB(t))
⊥, t > 0, x ∈ ∂B(t).

The translational and rotational velocities are a priori
unknown. We use the notation x⊥ = (−x2,x1). The fluid-
structure interaction emerges from the coupling with
the Newton equation which expresses the instantaneous
equilibrium of the forces applied to the particle:

(FSI2)





∫

B
fB −

∫

∂B
σ .n = 0,

∫

B
(x− xB)

⊥ · fB −
∫

∂B
(x− xB)

⊥ · (σ .n) = 0.

where σ := 2µD(u)− pI is the total stress tensor for
a Newtonian fluid. Here fB denotes the external non-
hydrodynamical forces exerted on the particle. In our
case we restrict our study to the gravity forces: fB :=
−ρB g(0,1), where ρB is the density of the particle. Let
us recall that buoyancy denotes the power to float or rise
in a fluid; therefore a particle is said buoyant if ρB 6= ρf

and neutrally buoyant if ρB = ρf.

1. Compute the instantaneous velocity field gener-
ated by the inclusion of a rigid sphere in the fluid.

2. Compute the dynamics of a buoyant sphere in a
fluid at rest.

3. Compute the dynamics of a neutrally buoyant el-
lipsoid in a linear shear flow.

�

Solution. We present a fictitious domain approach that
allows us to address the fluid-structure interaction prob-
lem.

“Direct” formulation of the problem. The computa-
tional method that we propose is based upon a fictitious
domain approach: the velocity field u and the pressure
field p, defined on Ω\B are extended over Ω by

u(t,x) = U(t)+ω(t)(x− xB(t))
⊥, on B(t),

p(t,x) = 0, on B(t).

The extension of p follows from the fact that the pres-
sure field is the Lagrange multiplier associated to the
incompressibility condition. Note that if u describes a
rigid movement, then it is divergence free, hence the ex-
tention by 0 for the associated pressure field is natural.

We introduce the functional spaces:

XB = {u ∈ (H1
0 (Ω))2, ∃(U,ω) ∈ R2 ×R,

u(x) =U +ω(x− xB)
⊥ a.e. in B},

MB = {p ∈ L2
0(Ω), p = 0 a.e. in B}.

We introduce the source term

f := ff1Ω\B + fB1B.

By the forthcoming Proposition 7.9, the fluid flow is
determined as the solution of the variational problem:
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(F)





Find (u, p) ∈ KB ×MB such that

2µ

∫

Ω
D(u) : D(v)−

∫

Ω
pdiv(v) =

∫

Ω
f · v,

∫

Ω
qdiv(u) = 0,

for all (v,q) ∈ KB ×MB.

Proposition 7.9 Let (u, p)∈ (H1
0 (Ω))2×L2

0(Ω). Assume
that the restriction to Ω\B of (u, p) belongs to (H2(Ω\
B))2 × H1(Ω \ B). Then (u, p) is a solution of Equa-
tions (FSI1)− (FSI2) if, and only if, (u, p) is a solution
of problem (F).

The dynamics of the rigid particle is described by:

(P)





d

dt
xB(t) =U(t) :=

∫

B(t)
ρBu(t,x)dx

∫

B(t)
ρB dx

,

d

dt
θB(t) = ω(t) :=

∫

B(t)
ρB u(t,x) · (x− xB(t))

⊥ dx

∫

B(t)
ρB ‖x− xB(t)‖2 dx

.

The computational method relies on the computa-
tion of the solution, at a given time, of the variational
problem (F) which determines the flow generated by the
inclusion of the particle and, then update the position of
the particle by solving (P) (with an explicit Euler scheme,
for instance). Thus let us focus on the computation of
the solution of problem (F).

Remark 7.10 For the sake of simplicity (and without
any consequences on the velocity field) we may replace
the source term modelling the gravity

f := ff1Ω\B + fB1B

by a source term modelling the buoyancy only:

f̃ := f − ff = ( fB − ff)1B.

Penalized formulation of problem (F). Solving prob-
lem (F) with a finite element solver is not easy: the ele-
ments should belong to the constrained functional spaces.
Moreover, as the rigid domain may evolve in time, so
do the constraints. As a consequence, a finite element
basis should be built at each time step, which is pro-
hibitive! In order to avoid these difficulties, we may use
an approximation method which consists in relaxing the
constraints in the functional spaces, thus leading to the
possibility of using standard finite element solvers. In
the variational formulation, the relaxation of the con-
straints should be associated with the introduction of
integrals which tend to mimick / impose the constraint
on the solution: this additional term is called a penalty
term.

Let us introduce another characterization of the rigid
movement:

Proposition 7.11 We have

XB = {u ∈ (H1
0 (Ω))2, D(u) = 0 a.e. in B}.

Roughly speaking, the above proposition states that rigid
movements do not deform the domain (as D(u) is the de-
formation tensor).

The penalty method applied to the variational for-
mulation leads to the following problem:

(Fε )





Find (uε , pε) ∈ (H1
0 (Ω))2 ×L2

0(Ω) such that

2µ

∫

Ω
D(uε) : D(v)+

2

ε

∫

B
D(uε) : D(v)

−
∫

Ω
pε div(v) =

∫

Ω
f · v,

∫

Ω
qdiv(uε) = 0,

for all (v,q) ∈ (H1
0 (Ω))2 ×L2

0(Ω).

Roughly speaking, the penalty term 2
ε

∫
BD(uε) : D(v)

ensures that when ε tends to 0, then D(uε) tends to 0
on B, thus satisfying the constraint in the asymptotic
regime. It means also that rigid domains are modelled
as highly viscous domains (with viscosity 1/ε).

It is possible to prove the following result:

Proposition 7.12 Let (u, p) be the solution of (F) and
let (uε , pε) be the solution of (Fε). Then

‖u− uε‖H1(Ω) = O(ε).

From the computational point of view, it is possible to
use a standard finite element solver to compute the solu-
tion of (Fε). This approach does not require mesh adap-
tation techniques: a fixed (structured or unstructured)
mesh can be used.

Algorithm for the dynamics of a rigid particle in
a fluid. The dynamics of a particle which evolves in
a fluid has been modelled by a strongly coupled fluid-
structure interaction problem: we aim at solving prob-
lems (F) and (P). Let us describe how to handle this
coupled problem with the computational aspects. Prob-
lem (P) is solved using an explicit Euler scheme but re-
quires the knowledge of the instantaneous velocity field
generated by the inclusion of the rigid particle, hence
the solution of problem (F). As it was outlined, prob-
lem (F) can be solved with the penalty formulation or
the saddle-point formulation. We present the algorithm
with the penalty method (the adaptation for the saddle-
point formulation is straightforward).

Assume that the position of a particle is known at
time tn. We aim at computing the velocity field in the
fluid at time tn and update the position of the particle at
time tn+1 = tn +∆t. The computational process writes:

Step 0 (initialization). The position of the cen-
ter of mass xn

B = xB(tn) and angle θ n
B = θB(tn) are

known. The rigid domain

Bn := B(tn)
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is completely characterized by xn
B, θ n

B and the geo-
metrical properties of the particle.

Step 1. Define the generalized viscosity and the
source term:

µn := µ1Ω\Bn +
1

ε
1Bn , f n := ( fBn − ff)1Bn .

Step 2. Solve (the penalized version of) prob-
lem (F):





Find (un, pn) ∈ (H1
0 (Ω))2 ×L2

0(Ω) such that∫

Ω
2µnD(un) : D(v)−

∫

Ω
pn div(v) =

∫

Ω
f n · v,

∫

Ω
qdiv(un) = 0,

for all (v,q) ∈ (H1
0 (Ω))2 ×L2

0(Ω).

Note that the definition of µn leads to write the
penalized problem as

∫

Ω
2µnD(u) : D(v)

= 2µ

∫

Ω
D(u) : D(v)+

2

ε

∫

Bn
D(u) : D(v).

Note also that the above problem can be used with
a standard finite element solver.

Step 3. Solve problem (P) with an explicit Euler
scheme:

Compute the translational and rotational ve-
locities of the particle at time tn:

Un :=

∫

Bn
ρBun(x)dx
∫

Bn
ρB dx

,

ωn :=

∫

Bn
ρBun(x) · (x− xBn)⊥ dx
∫

Bn
ρB‖x− xBn‖2 dx

.

Update the position of the particle:

xn+1
B = xn

B +∆tUn, θ n+1
B = θ n

B +∆t ωn.

1. Inclusion of a rigid sphere in a fluid. We con-
sider the domain Ω =]0,1[2 which divides into two
(moving) subdomains: a part is occupied by an
incompressible Newtonian fluid (viscosity µ = 1)
and the other part is a rigid sphere (radius 0.1)
at (x0,y0) = (0.5,0.8). The sphere is not neutrally
buoyant (ρB = 1.0, ρf = 0.1). The instantaneous ve-
locity field generated by the inclusion of the sphere
may be computed by using the penalized formu-
lation of the problem. In the penalized formu-
lation, a generalized Stokes problem is solved at

each time step. This requires the use of finite el-
ements that are inf-sup stable. In that prospect
we use P1

b −P1 finite elements. Note that it is no
worth using P2 −P1 elements in order to increase
the accuracy of the solution: the extension of the
velocity field from Ω\B to Ω is not in H3(Ω). Actu-
ally the velocity field is not even in H2(Ω) (at the
fluid-particle interface, the velocity field is contin-
uous but its gradient admits a jump discontinuity
through the interface). As a consequence, higher
order finite elements would increase the computa-
tional costs without additional accuracy. Never-
theless the analysis guarantees that, by using the
mini element, the numerical solution converges to
the exact solution with a suboptimal order of con-
vergence (in order to guarantee a convergence rate
of order 1, the solution should be in H2, see The-
orem 6.6). Figure 27 presents the velocity field
generated by a rigid sphere of radius r = 0.1 and
coordinates (0.5,0.6). The sphere is not neutrally
buoyant (ρB > ρf).

2. Sedimentation of a rigid sphere in a fluid at rest,
see Section 8, Program 8.2. We consider the do-
main Ω =]0,1[2 made of an incompressible Newto-
nian fluid and a rigid sphere of radius 0.1 with a
center of mass located at (0.5,0.8). The sphere is
not neutrally buoyant (ρB > ρf) so that it is ex-
pected that the sphere falls down to the ground.
By a symmetry argument, if the initial position
of the sphere is symmetric with respect to the
axis x = 0.5 then the sphere falls along this axis
with a zero angular velocity. As a consequence we
only compute the translational velocity in order
to update the position of the sphere. We compute
the solution of the penalized version of the fluid-
structure interaction problem with P1

b −P1 finite
elements on a 100×100 structured mesh. The fall
of a rigid sphere in a fluid at rest is reproduced in
Figure 28.

3. Rotating ellipsoid in a linear shear flow, see Sec-
tion 8, Section 8.8, Program 8.3. We consider the
domain Ω =]0,1[2. A linear shear flow may be de-
scribed by the velocity profile

u(x,y) = (1− 2y)

(
1

0

)
,

which is obtained by solving the Stokes equations
in Ω with the boundary conditions

u(·,0) = +1, on y = 0,
u(·,1) =−1, on y = 1,

and periodic conditions with respect to x. Con-
sider an ellipsoid (with half semi-axes 0.1 and 0.25)
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1)

1B

1

0

2)

‖u‖2

0

16 ·10−3

8 ·10−3

3)

ux

0

7.5 ·10−3

−7.5 ·10−3

4)

uy

−16 ·10−3

9 ·10−3

Figure 27. Solution of the fluid-structure interaction problem with the penalty method with P1
b −P1 finite elements

on a 100×100 structured mesh: 1) characteristic function of B. 2) velocity field. 3) first component of the velocity
field. 4) second component of the velocity field.
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0

Figure 28. Position of the sphere and velocity field at different times ti.
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which is neutrally buoyant (i.e. ρB = ρf). When in-
serting the ellipsoid in the shear flow, the velocity
profile in the fluid is modified and, as a result, the
backflow produces a movement of the ellipsoid. We
expect that, if the center of mass is initially located
at (0.5,0.5), it does not evolve in time (no gravity
effect), i.e. the ellipsoid does not translate. But
the angular position of the ellipsoid does evolve
in time: the ellipsoid rotates around its center of
mass. We compute the solution of the penalized
version of the fluid-structure interaction problem
with P1

b −P1 finite elements on a 100× 100 struc-
tured mesh. Figure 29 represents the ellipsoid and
the velocity field at different time steps.

�

8. FreeFem++ programs

8.1 Problem 1
/********************************************/

/* PROBLEM 1 */

/********************************************/

/* == Fine mesh *****************************/

mesh Th0=square(300,300);

/* == Solution of the Poisson problem *******/

func u=x*y*(1.-x)*(1.-y);

/* == Source term ***************************/

func f=2*y*(1.-y)+2*x*(1.-x);

/* == Boundary conditions *******************/

func g=0;

/* == Number of computed errors *************/

int Niter=20;

/* == Storage of the error in L2 or H1 ******/

real[int] eL2(Niter);

real[int] eH1(Niter);

real[int] hL2(Niter);

real[int] hH1(Niter);

/* == Finite element space on the fine mesh */

fespace Vh0(Th0,P2);

/* == Projection on the fine mesh ***********/

Vh0 u0=u;

/* == Initialization of the number of nodes */

int np=10;

/* == Initialization of the mesh ************/

mesh Th=square(np,np);

/* == Finite element on the coarse mesh *****/

fespace Vh(Th,P2);

Vh uh,vh,errh;

/* == Variational problem *******************/

problem Poisson(uh,vh,solver=LU) =

int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))

-int2d(Th)(f*vh)

+on(1,2,3,4,uh=g) ;

/* == Compute uh and uh-u for different h ***/

for (int i=0;i<Niter;i++){

Th=square(np,np);

Poisson;

errh=u-uh;

Vh0 uh0=uh;

Vh0 errh0=u0-uh0;

real errL2=sqrt(int2d(Th0)(errh0^2));

real errH1=sqrt(int2d(Th0)(dx(errh0)^2

+dy(errh0)^2));

hL2(i)=1./(np-1);

eL2(i)=errL2;

hH1(i)=1./(np-1);

eH1(i)=errH1;

plot(uh,wait=0);

np=np+2;

}

ofstream out1("P2_errL2.txt");

for (int i=0;i<Niter;i++){

out1<<log(hL2(i))<<" "<<log(eL2(i))<<endl;

}

ofstream out2("P2_errH1.txt");

for (int i=0;i<Niter;i++){

out2<<log(hH1(i))<<" "<<log(eH1(i))<<endl;

}

/********************************************/

8.2 Problem 2

From the Robin condition to the Dirichlet condition

/********************************************/

/* PROBLEM 2-1: FROM THE ROBIN CONDITION */

/* TO THE DIRICHLET CONDITION */

/********************************************/

/* == Mesh **********************************/

int np=200;

mesh Th=square(np,np);



78 Introducción al método de los elementos finitos
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Figure 29. Position of the ellipsoid and velocity field at different times ti.
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plot(Th,wait=0);

/* == P1 finite element space ***************/

fespace Vh(Th,P1);

Vh uh,vh,ueh,e;

func f=1.;

func g=0.;

int Niter=20;

real[int] errH1(Niter);

real[int] ee(Niter);

real eps=0.1;

real alpha=1;

/* == Variational problem *******************/

/* == with Dirichlet conditions *************/

problem laplDir(uh,vh,solver=LU)=

int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))

+int2d(Th)(alpha*uh*vh)

-int2d(Th)(f*vh)

+on(1,2,3,4,uh=g) ;

laplDir;

plot(uh,wait=0);

/* == Variational problem *******************/

/* == with Robin condition ******************/

problem laplRobin(ueh,vh,solver=LU)=

int2d(Th)(dx(ueh)*dx(vh)+dy(ueh)*dy(vh))

+int2d(Th)(alpha*ueh*vh)

+int1d(Th,1,2,3,4)((1./eps)*ueh*vh)

-int2d(Th)(f*vh);

/* == Compute the error ue-u0 ***************/

for (int i=0;i<Niter;i++){

laplRobin;

e=uh-ueh;

real eH1=sqrt(int2d(Th)(e^2)

+int2d(Th)(dx(e)^2+dy(e)^2));

errH1(i)=eH1;

ee(i)=eps;

plot(ueh,wait=0);

eps=eps/2.;

}

ofstream out1("q2_errorH1.txt");

for (int i=0;i<Niter;i++){

out1<<log(ee(i))<<" "<<log(errH1(i))<<endl;

}

/********************************************/

From the Robin condition to the Neuman condition

/********************************************/

/* PROBLEM 2-2: FROM THE ROBIN CONDITION */

/* TO THE NEUMANN CONDITION */

/********************************************/

/* == Mesh **********************************/

int np=200;

mesh Th=square(np,np);

plot(Th,wait=0);

/* == P1 finite element space ***************/

fespace Vh(Th,P1);

Vh uh,vh,fh,ueh,e;

func f=1;

real alpha=1;

int Niter=10;

real[int] errH1(Niter);

real[int] ee(Niter);

real eps=100;

/* == Variational problem *******************/

/* == with Neumann conditions ***************/

problem laplNeum(uh,vh,solver=LU) =

int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))

+int2d(Th)(alpha*uh*vh)

-int2d(Th)(f*vh);

laplNeum;

plot(uh,wait=0,value=true);

/* == Variational problem *******************/

/* == with Robin condition ******************/

problem laplRobin(ueh,vh,solver=LU) =

int2d(Th)(dx(ueh)*dx(vh)+dy(ueh)*dy(vh))

+int2d(Th)(alpha*ueh*vh)

+int1d(Th,1,2,3,4)((1./eps)*ueh*vh)

-int2d(Th)(f*vh) ;

for (int i=0;i<Niter;i++){

laplRobin;

e=uh-ueh;

real eL2=sqrt(int2d(Th)(e^2));

real eH1=sqrt(int2d(Th)(e^2)

+int2d(Th)(dx(e)^2+dy(e)^2));

errH1(i)=eH1;

ee(i)=eps;

plot(ueh,wait=0,value=true);

cout<<i<<endl;

eps=eps*10.;

}
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ofstream out1("q3_errorH1.txt");

for (int i=0;i<Niter;i++){

out1<<log(ee(i))<<" "<<log(errH1(i))<<endl;

}

/********************************************/

8.3 Problem 3
/********************************************/

/* PROBLEM 3 */

/********************************************/

/* == Define the boundaries of the domain ***/

border A(t=0.,1) {x=t ;y=0; label=1;};

border B(t=0.,1) {x=1 ;y=t; label=2;};

border C(t=0.,1) {x=1-t;y=1; label=3;};

border D(t=0.,1) {x=0 ;y=1-t;label=4;};

/* == Number of elements on each boundary ***/

int n=500;

/* == Mesh generation ***********************/

mesh Th = buildmesh(A(n)+B(n)+C(n)+D(n));

plot(Th,wait=1);

/* == Dirichlet boundary function ***********/

/* == - g0 for problem (P^0) ****************/

/* == - g1 for problem (P^1) ****************/

func g0=0;

func g1=1;

/* == Finite element space (here: P1) *******/

fespace Vh(Th,P1);

Vh u,v,w;

/* == Define the source term ****************/

func f=1;

/* == Define the variational formulation ****/

/* == - select g0 on boundary 4 for (P^0) ***/

/* == - select g1 on boundary 4 for (P^1) ***/

problem Poisson(u,v,solver=LU)=

int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))

-int2d(Th)(f*v)

+on(1,2,3,u=0)

+on(4,u=g0);

/* == Solve the problem *********************/

Poisson;

/* == Compute the H1-norm of the solution ***/

real normH1=sqrt(int2d(Th)(dx(u)^2+dy(u)^2));

cout<< normH1 <<endl;

plot(u,fill=0,wait=0,value=1);

w=sqrt(dx(u)^2+dy(u)^2);

plot(w,fill=0,wait=0,value=1);

/********************************************/

8.4 Problem 4
/********************************************/

/* PROBLEM 4 */

/********************************************/

/* == Mesh **********************************/

int np=200;

mesh Th=square(np,np);

/* == P1 finite element space ***************/

fespace Vh(Th,P1);

Vh uh,vh;

/* == Source term f *************************/

func f=1.;

//Vh fh=f;

/* == Source term g on each boundary ********/

func g1= x*(1.-x);

func g2= 0.;

func g3=-x*(1.-x);

func g4= 0.;

/* == Penalization parameter ****************/

real eps=1.0E-8;

/* == Variational problem *******************/

problem laplace(uh,vh,solver=LU)=

int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))

+int2d(Th)(eps*uh*vh)

-int2d(Th)(f*vh)

-int1d(Th,1)(g1*vh)

-int1d(Th,2)(g2*vh)

-int1d(Th,3)(g3*vh)

-int1d(Th,4)(g4*vh);

real CC=int2d(Th)(f)

+int1d(Th,1)(g1)+int1d(Th,2)(g2)

+int1d(Th,3)(g3)+int1d(Th,4)(g4);

cout<<"Value (should be 0): "<<CC<<endl;

laplace;

plot(uh,wait=0,value=true);

/********************************************/

8.5 Problem 5
/********************************************/

/* PROBLEM 5 */

/********************************************/

/* == Fine mesh *****************************/

mesh Th0=square(300,300);



Introducción al método de los elementos finitos 81

/* == Data of the problem *******************/

real a =0.5;

real x0=0.5;

real y0=0.5;

/* == Solution of the Poisson problem *******/

func u=((x-x0)^2+(y-y0)^2)^(a/2.);

/* == Source term ***************************/

func f=a^2*((x-x0)^2+(y-y0)^2)^(a/2.-1.);

/* == Boundary conditions *******************/

func g=u;

/* == Number of computed errors *************/

int Niter=20;

/* == Storage of the error in L2 or H1 ******/

real[int] eL2(Niter);

real[int] eH1(Niter);

real[int] hL2(Niter);

real[int] hH1(Niter);

/* == Finite element space on the fine mesh */

fespace Vh0(Th0,P2);

/* == Projection on the fine mesh ***********/

Vh0 u0=u;

plot(u0,value=1,fill=0,wait=0);

/* == Initialization of the number of nodes */

int np=10;

/* == Initialization of the mesh ************/

mesh Th=square(np,np);

/* == Finite element on the coarse mesh *****/

fespace Vh(Th,P2);

Vh uh,vh,errh;

/* == Variational problem *******************/

problem Poisson(uh,vh) =

int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))

-int2d(Th)(f*vh)

+on(1,2,3,4,uh=g) ;

Poisson;

/* == Compute uh and uh-u for different h ***/

for (int i=0;i<Niter;i++){

Th=square(np,np);

Poisson;

errh=u-uh;

Vh0 uh0=uh;

Vh0 errh0=u0-uh0;

real errL2=sqrt(int2d(Th0)(errh0^2));

real errH1=sqrt(int2d(Th0)(dx(errh0)^2

+dy(errh0)^2));

hL2(i)=1./(np-1);

eL2(i)=errL2;

hH1(i)=1./(np-1);

eH1(i)=errH1;

plot(uh,value=1,fill=1,wait=0);

np=np+2;

}

ofstream out1("errL2.txt");

for (int i=0;i<Niter;i++){

out1<<log(hL2(i))<<" "<<log(eL2(i))<<endl;

}

ofstream out2("errH1.txt");

for (int i=0;i<Niter;i++){

out2<<log(hH1(i))<<" "<<log(eH1(i))<<endl;

}

/********************************************/

8.6 Problem 6
/********************************************/

/* PROBLEM 6 */

/********************************************/

int n=50;

mesh Th=square(n,n);

//fespace Xh(Th,[P1,P1,P0]);

//fespace Xh(Th,[P1,P1,P1]);

//fespace Xh(Th,[P1b,P1b,P1]);

fespace Xh(Th,[P2,P2,P1]);

/* === Velocity and pressure field **********/

Xh [u1,u2,p],[v1,v2,q];

/* === Source term **************************/

real r=0.25;

V0h f1h=50*((x-0.5)^2+(y-0.5)^2<r^2);

V0h f2h=50*((x-0.5)^2+(y-0.5)^2<r^2);

/* == Stabilization parameter ***************/

real eps=1E-6;

/********************************************/

/* == Stokes problem ************************/

/*********************************************/

problem Stokes([u1,u2,p],[v1,v2,q])=

int2d(Th)(2*dx(u1)*dx(v1)+dy(u1)*dy(v1)

+dx(u2)*dx(v2)+2*dy(u2)*dy(v2)

+dy(u1)*dx(v2)+dx(u2)*dy(v1))

+int2d(Th)(eps*p*q-p*dx(v1)-p*dy(v2)

-q*dx(u1)-q*dy(u2))
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-int2d(Th)(f1h*v1+f2h*v2)

+on(1,2,3,4,u1=0,u2=0);

Stokes;

plot([u1,u2],value=1);

plot(p,fill=1,value=1);

/********************************************/

8.7 Problem 7
/********************************************/

/* PROBLEM 7 */

/********************************************/

/* == Mesh **********************************/

int np=100;

mesh Th=square(np,np);

/* == P1 finite element space ***************/

fespace Vh(Th,P1);

Vh uh,vh;

/* == P0 finite element space ***************/

fespace Ph(Th,P0);

/* == Characteristic function ***************/

Ph chih=((x-0.5)^2+(y-0.5)^2<0.2^2);

/* == Source term f *************************/

Ph fh=((x-0.5)^2+(y-0.5)^2<0.2^2)

-((x-0.5)^2+(y-0.5)^2>0.2^2);

/* == Lagrange multiplier *******************/

/* == lm0: Lagrange multiplier at time n ****/

/* == lm : Lagrange multiplier at time n+1 **/

real lm,lm0=0.;

/* == Uzawa parameters **********************/

real rhomax=2./(int2d(Th)(chih))^2;

real rho=0.5*rhomax;

real tol=1.E-8;

int Nmax=100;

/* == Variational problem *******************/

problem laplace(uh,vh,solver=LU)=

int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))

+int2d(Th)(uh*vh)

-int2d(Th)(fh*vh)

+int2d(Th)(lm0*chih*vh);

/* == Uzawa algorithm ***********************/

real err=2*tol;

int i=1;

while ((i<=Nmax)&&(err>tol)){

laplace;

lm=lm0+rho*int2d(Th)(chih*uh);

err=sqrt((lm-lm0)^2);

lm0=lm;

i=i+1;

cout<<"i="<<i<<" ; error="<<err<<endl;

}

plot(uh,wait=0,value=true);

cout<< "*** Constraint:"<<endl;

cout<< " Bu="<< int2d(Th)(chih*uh)<<endl;

cout<< " lambda="<<lm<<endl;

/********************************************/

8.8 Problem 8
Rigid sphere in a fluid: computing the velocity field with a
penalized formulation

/********************************************/

/* PROBLEM 8-1 */

/* FSI PROBLEM A PENALIZED FORMULATION */

/********************************************/

mesh Th =square(100,100);

fespace Vh(Th,P1b);

fespace Xh(Th,P1);

Vh u1,u2,v1,v2;

Xh p,q;

/* == Coordinates / radius of the sphere ****/

real xB=0.5, yB=0.6, rB=0.1;

/* == Gravity and buoyancy ******************/

real g=9.81, rhoB=1.0, rhoF=0.1;

/* == Source term, characteristic function **/

fespace Ph(Th,P0);

Ph chiB = ((x-xB)^2+(y-yB)^2 < rB^2);

Ph f1 = 0.00;

Ph f2 = -(rhoB-rhoF)*g*chiB;

real eps=1.0E-5, delta=1.0E-8;

/* == Penalized formulation *****************/

problem FSI([u1,u2,p],[v1,v2,q])=

int2d(Th)(2*dx(u1)*dx(v1)+dy(u1)*dy(v1)

+dx(u2)*dx(v2)+2*dy(u2)*dy(v2)

+dy(u1)*dx(v2)+dx(u2)*dy(v1))

+int2d(Th)(delta*p*q-p*dx(v1)-p*dy(v2)

+q*dx(u1)+q*dy(u2))

-int2d(Th)(f1*v1+f2*v2)

+int2d(Th)((2*dx(u1)*dx(v1)+dy(u1)*dy(v1)

+dx(u2)*dx(v2)+2*dy(u2)*dy(v2)
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+dy(u1)*dx(v2)+dx(u2)*dy(v1))*chiB/eps)

+on(1,2,3,4,u1=0,u2=0);

FSI;

/* == Computing the translational velocity **/

real Mh=int2d(Th)(rhoB*chiB);

real uB=int2d(Th)(rhoB*chiB*u1)/Mh;

real vB=int2d(Th)(rhoB*chiB*u2)/Mh;

/* == Computing the angular velocity ********/

real Jh,oB;

Jh=int2d(Th)(rhoB*chiB*((x-xB)^2+(y-yB)^2));

oB=int2d(Th)(rhoB*chiB*(-(y-yB)*u1+(x-xB)*u2))/Jh;

cout<<"(u,v)=("<<uB<< ","<<vB<<")"<<endl;

cout<<"omega="<<oB<<endl;

plot(chiB,fill=true,wait=0);

plot([u1,u2],value=true,wait=0,coef=5);

Sedimentation of a rigid sphere in a fluid at rest

/********************************************/

/* PROBLEM 8-2 */

/* SEDIMENTATION OF A RIGID SPHERE */

/********************************************/

mesh Th =square(100,100);

fespace Xh(Th,P1b);

fespace Mh(Th,P1);

Xh u1,u2,v1,v2;

Mh p,q;

/* == Coordinates / radius of the sphere ****/

real xB=0.5, yB=0.8, rB=0.1;

/* == Gravity and buoyancy ******************/

real g=9.81, rhoB=1.0, rhoF=0.1;

/* == Source term, characteristic function **/

fespace Ph(Th,P0);

Ph chiB = ((x-xB)^2+(y-yB)^2 < rB^2);

Ph f1=0.00;

Ph f2=-(rhoB-rhoF)*g*chiB;

/* == Parameters ****************************/

real eps=1.0E-2, delta=1.0E-8;

/* == Variational formulation ***************/

problem FSI([u1,u2,p],[v1,v2,q])=

int2d(Th)(2*dx(u1)*dx(v1)+dy(u1)*dy(v1)

+dx(u2)*dx(v2)+2*dy(u2)*dy(v2)

+dy(u1)*dx(v2)+dx(u2)*dy(v1))

+int2d(Th)(delta*p*q-p*dx(v1)-p*dy(v2)

+q*dx(u1)+q*dy(u2))

-int2d(Th)(f1*v1+f2*v2)

+int2d(Th)((2*dx(u1)*dx(v1)+dy(u1)*dy(v1)

+dx(u2)*dx(v2)+2*dy(u2)*dy(v2)

+dy(u1)*dx(v2)+dx(u2)*dy(v1))*chiB/eps)

+on(1,2,3,4,u1=0,u2=0);

/* == Time evolution ************************/

int imax=50;

real t=0.0;

real vpart1=0.0;

real vpart2=0.0;

real dt=1.0;

for (int i=0 ; i<=imax; i++){

FSI;

plot([u1,u2],ps="u"+i+".eps",coef=1);

plot(chiB,ps="chi"+i+".eps",fill=1);

t=t+dt;

vpart1=u1(xB,yB);

vpart2=u2(xB,yB);

xB=xB+vpart1*dt;

yB=yB+vpart2*dt;

chiB= ((x-xB)^2+(y-yB)^2 < rB^2);

f2=-(rhoB-rhoF)*g*chiB;

plot(chiB,fill=1);

}

Rigid ellipsoid in a linear shear flow

/********************************************/

/* PROBLEM 8-3 */

/* ROTATING ELLIPSOID IN A SHEAR FLOW */

/********************************************/

mesh Th =square(100,100);

fespace Vh(Th,P1b);

fespace Wh(Th,P1);

Vh u1,u2,v1,v2;

Wh p,q;

/* == Coordinates / radii of the ellipsoid **/

real xB=0.5,yB=0.5,thetaB=0,rB=0.1,dB=0.25;

/* == Gravity and buoyancy ******************/

real g=9.81, rhoB=1., rhoF=1.;

real Mh,Jh,uB,vB,omegaB;

real cosB=cos(thetaB);

real sinB=sin(thetaB);

/* == Source term, characteristic function **/

fespace Ph(Th,P0);

Ph chiB;

chiB=(((x-xB)*cosB+(y-yB)*sinB)^2/rB^2

+(-(x-xB)*sinB+(y-yB)*cosB)^2/dB^2<=1.0);

Ph f1=0.00;

Ph f2=-(rhoB-rhoF)*g*chiB;
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/* == Boundary condition (Couette flow) *****/

func g1=1.0*(1.-2*y);

func g2=0;

/* == Parameters ****************************/

real eps=1.0E-2, delta=1.0E-8;

/* == Variational formulation ***************/

problem FSI([u1,u2,p],[v1,v2,q],solver=Crout)=

int2d(Th)(2*dx(u1)*dx(v1)+dy(u1)*dy(v1)

+dx(u2)*dx(v2)+2*dy(u2)*dy(v2)

+dy(u1)*dx(v2)+dx(u2)*dy(v1))

+int2d(Th)(delta*p*q-p*dx(v1)-p*dy(v2)

+q*dx(u1)+q*dy(u2))

-int2d(Th)(f1*v1+f2*v2)

+int2d(Th)((2*dx(u1)*dx(v1)+dy(u1)*dy(v1)

+dx(u2)*dx(v2)+2*dy(u2)*dy(v2)

+dy(u1)*dx(v2)+dx(u2)*dy(v1))*chiB/eps)

+on(1,2,3,4,u1=g1,u2=g2);

/* == Time evolution ************************/

int imax=100;

real t = 0.0;

real dt= 0.1;

for (int i=0 ; i<=imax; i++){

FSI;

plot([u1,u2],ps="u"+i+".eps",wait=0,coef=1);

plot(chiB,ps="chi"+i+".eps",wait=0,fill=1);

t=t+dt;

/* == Translational velocity *************/

Mh=int2d(Th)(rhoB*chiB);

uB=int2d(Th)(rhoB*chiB*u1)/Mh;

vB=int2d(Th)(rhoB*chiB*u2)/Mh;

/* == Angular velocity *******************/

Jh=int2d(Th)(rhoB*chiB*((x-xB)^2+(y-yB)^2));

omegaB=int2d(Th)(rhoB*chiB*

(-(y-yB)*u1+(x-xB)*u2))/Jh;

/* == Update of the position *************/

xB=xB+uB*dt;

yB=yB+vB*dt;

thetaB=thetaB+omegaB*dt;

cosB=cos(thetaB);

sinB=sin(thetaB);

chiB=(((x-xB)*cosB+(y-yB)*sinB)^2/rB^2

+(-(x-xB)*sinB+(y-yB)*cosB)^2/dB^2<=1.0);

f2=-(rhoB-rhoF)*g*chiB;

cout<<"thetaB="<<<<thetaB<<endl;

}
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